【题目】△ABC中,∠C=90°,内切圆与AB相切于点D,AD=2,BD=3,则△ABC的面积为( )
A.3B.6C.12D.无法确定
【答案】B
【解析】
易证得四边形OECF是正方形,然后由切线长定理可得AC=2+r,BC=3+r,AB=5,根据勾股定理列方程即可求得答案.
如图,设⊙O分别与边BC、CA相切于点E、F,
连接OE,OF,
∵⊙O分别与边AB、BC、CA相切于点D、E、F,
∴DE⊥BC,DF⊥AC,AF=AD=2,BE=BD=3,
∴∠OEC=∠OFC=90°,
∵∠C=90°,
∴四边形OECF是矩形,
∵OE=OF,
∴四边形OECF是正方形,
设EC=FC=r,
∴AC=AF+FC=2+r,BC=BE+EC=3+r,AB=AD+BD=2+3=5,
在Rt△ABC中,=+,
∴=+,
∴,
即
解得:或(舍去).
∴⊙O的半径r为1,
∴.
故选:B
科目:初中数学 来源: 题型:
【题目】我们定义:如果圆的两条弦互相垂直,那么这两条弦互为“十字弦”,也把其中的一条弦叫做另一条弦的“十字弦”.如:如图,已知的两条弦,则、互为“十字弦”,是的“十字弦”,也是的“十字弦”.
(1)若的半径为5,一条弦,则弦的“十字弦”的最大值为______,最小值为______.
(2)如图1,若的弦恰好是的直径,弦与相交于,连接,若,,,求证:、互为“十字弦”;
(3)如图2,若的半径为5,一条弦,弦是的“十字弦”,连接,若,求弦的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华人民共和国《城市道路路内停车泊位设置规范》规定:
一、在城市道路范围内,在不影响行人、车辆通行的情况下,政府有关部门可以规划停车泊位.停车泊位的排列方式有三种,如图所示:
二、双向通行道路,路幅宽米以上的,可在两侧设停车泊位,路幅宽米到米的,可在单侧设停车泊位,路幅宽米以下的,不能设停车泊位;
三、规定小型停车泊位,车位长米,车位宽米;
四、设置城市道路路内机动车停车泊位后,用于单向通行的道路宽度应不小于米.
根据上述的规定,在不考虑车位间隔线和车道间隔线的宽度的情况下,如果在一条路幅宽为米的双向通行车道设置同一种排列方式的小型停车泊位,请回答下列问题:
(1)可在该道路两侧设置停车泊位的排列方式为 ;
(2)如果这段道路长米,那么在道路两侧最多可以设置停车泊位 个.
(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.
(1)该店每天销售这两种软件共多少个?
(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中直径AB⊥弦CD于E,点F是的中点,CF交AB于I,连接BD、AC、AD.
(1)求证:BI=BD;
(2)若OI=1,OE=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司从2016年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年度 | 投入技改资金x/万元 | 产品成本y/(万元/件) |
2016 | 2 | 18 |
2017 | 3 | 12 |
2018 | 4 | 9 |
2019 | 4.5 | 8 |
(1)根据表格中数据,求y关于x的函数解析式。
(2)在图中的网格中建立适当的平面直角坐标系,画出该函数的大致图像。
(3)如果打算在2020年让产品成本不高于7万元,则投入技改资金至少为 万元。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com