【题目】解一元二次方程:
(1)(2x+1)2=9;
(2)x2+4x﹣2=0;
(3)x2﹣6x+12=0;
(4)3x(2x+1)=4x+2.
【答案】(1)x1=1,x2=﹣2;(2)x1=﹣2+,x2=﹣2﹣;(3)方程没有实数解;(4)x1=﹣,x2=.
【解析】
(1)利用直接开平方法解方程;(2)利用配方法解方程;
(3)根据判别式的意义判断方程没有实数解;(4)先移项得到3x(2x+1)﹣2(2x+1)=0,然后利用因式分解法解方程.
解:(1)2x+1=±3,
所以x1=1,x2=﹣2;
(2)x2+4x=2,
x2+4x+4=6,
(x+2)2=6,
x+2=±,
所以x1=﹣2+,x2=﹣2﹣;
(3)△=(﹣6)2﹣4×1×12<0,
所以方程没有实数解;
(4)3x(2x+1)﹣2(2x+1)=0,
(2x+1)(3x﹣2)=0,
2x+1=0或3x﹣2=0,
所以x1=﹣,x2=.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=﹣x+6分别与x轴,y轴交于点B,C且与直线y=x交于点A,点D是直线OA上的点,当△ACD为直角三角形时,则点D的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+4的图象分别与x轴,y轴的正半轴交于点E、F,一次函数y=kx﹣4的图象与直线EF交于点A(m,2),且交于x轴于点P,
(1)求m的值及点E、F的坐标;
(2)求△APE的面积;
(3)若B点是x轴上的动点,问在直线EF上,是否存在点Q(Q与A不重合),使△BEQ与△APE全等?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行2000米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游乐场普通门票价格40元/张,为了促销,新推出两种办卡方式:
①白金卡售价200元/张,每次凭卡另收取20元;
②钻石卡售价1000元/张,每次凭卡不再收费.
促销期间普通门票正常出售,两种优惠卡不限次数,设去游乐场玩x次时,所需总费用为y元.
(1)分别写出选择白金卡、普通门票消费时,y与x之间的函数关系式.
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点B,C的坐标.
(3)请根据图象,直接写出选择哪种消费方式更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.
【探究展示】
(1)证明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校大门出口处有一自动感应栏杆,点A是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大门打开的宽度BC为2米,以下哪辆车可以通过?(栏杆宽度,汽车反光镜忽略不计)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)( )
A. 宝马Z4(4200mm×1800mm×1360mm) B. 奔驰smart(4000mm×1600mm×1520mm)
C. 大众朗逸(4600mm×1700mm×1400mm) D. 奥迪A6L(4700mm×1800mm×1400mm)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com