【题目】如图,,,.给出下列结论:①;②;③;④.其中正确结论的序号是__________.
【答案】①②③
【解析】
根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.
∵∠E=∠F=90,∠B=∠C,
∵∠E+∠B+∠EAB=180,∠F+∠C+∠FAC=180,
∴∠EAB=∠FAC,
∴∠EABCAB=∠FAC∠CAB,
即∠1=∠2,∴①正确;
在△EAB和△FAC中
∴△EAB≌△FAC,
∴BE=CF,AC=AB,∴②正确;
在△ACN和△ABM中
∴△ACN≌△ABM,∴③正确;
∵根据已知不能推出CD=DN,
∴④错误;
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明租用共享单车从家出发,匀速骑行到相距2400米的邮局办事.小明出发的同时,他的爸爸以每分钟100米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回.设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1,s2与t之间的函数关系的图象.
(1)求s1与t之间的函数表达式;
(2)小明从家出发,经过_______分在返回途中追上爸爸.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)请在横线上填写合适的内容,完成下面的证明:
如图①如果AB∥CD,求证:∠APC=∠A+∠C.
证明:过P作PM∥AB.
所以∠A=∠APM,( )
因为PM∥AB,AB∥CD(已知)
所以∠C= ( )
因为∠APC=∠APM+∠CPM
所以∠APC=∠A+∠C(等量代换)
(2)如图②,AB∥CD,根据上面的推理方法,直接写出∠A+∠P+∠Q+∠C= .
(3)如图③,AB∥CD,若∠ABP=x,∠BPQ=y,∠PQC=z,∠QCD=m,则m= (用x、y、z表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中AD∥BC, ∠B=60°,AB=AD=BO=4cm,OC=8cm, 点M从B点出发,按从B→A→D→C的方向,沿四边形BADC的边以1cm/s的速度作匀速运动,运动到点C即停止.若运动的时间为t,△MOD的面积为y,则y关于t的函数图象大约是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是( )
A. 函数有最小值
B. 对称轴是直线x=
C. 当x<,y随x的增大而减小
D. 当﹣1<x<2时,y>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线AB交x轴于点A(4 ,0),交y轴于点B(0 ,4),
(1)如图,若C的坐标为(-1, ,0),且AH⊥BC于点H,AH交OB于点P,试求点P的坐标;
(2)在(1)的条件下,如图2,连接OH,求证:∠OHP=45°;
(3)如图3,若点D为AB的中点,点M为y轴正半轴上一动点,连结MD,过点D作DN⊥DM交x轴于N点,当M点在y轴正半轴上运动的过程中,式子的值是否发生改变?如发生改变,求出该式子的值的变化范围;若不改变,求该式子的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.
(1)直线AD与BC有何位置关系?请说明理由.
(2)求∠DBE的度数.
(3)若把AD左右平行移动,在平行移动AD的过程中,是否存在某种情况,使∠BEC=∠ADB?若存在,求出此时∠ADB的度数;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com