分析 根据x2+mx+n=0是“凤凰”方程,且有两个相等的实数根,列出方程组,求出m,n的值,再代入计算即可.
解答 解:根据题意得:
$\left\{\begin{array}{l}{1+m+n=0}\\{{m}^{2}-4m=0}\end{array}\right.$
解得:$\left\{\begin{array}{l}{m=-2}\\{n=1}\end{array}\right.$,
则m2+n2=(-2)2+12=5.
点评 本题考查了一元二次方程的解,根的判别式,关键是根据已知条件列出方程组,用到的知识点是一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
科目:初中数学 来源: 题型:选择题
| A. | (1+x)2=57 | B. | 1+x+x2=57 | C. | (1+x)x=57 | D. | 1+x+2x=57 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com