【题目】如图,中,,D,E,F分别为AB,BC,CA上的点,且,.
(1)求证:≌;
(2)若,求的度数.
【答案】(1)证明见解析;(2)55°.
【解析】
(1)根据三角形外角的性质可得到∠CEF=∠BDE,可证△BDE≌△CEF;
(2)由(1)可得DE=FE,即△DEF是等腰三角形,由等腰三角形的性质可求出∠B=70°,即∠DEF=∠B=70°,从而求出∠EDF的度数.
(1)∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.
∵AB=AC,∴∠C=∠B.
又∵CE=BD,∴△BDE≌△CEF.
(2)∵△BDE≌△CEF,∴DE=FE.
∴△DEF是等腰三角形,∴∠EDF=∠EFD.
∵AB=AC,∠A=40°,∴∠B=70°.
∵∠DEF=∠B,∴∠DEF=70°,∴∠EDF=∠EFD=×(180°﹣70°)=55°.
科目:初中数学 来源: 题型:
【题目】从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.
(1)求证:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,D是AB上的点,过点D作交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有( )
①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.
(1)求证:BC=DE;
(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,该抛物线与x轴的一个交点为(﹣1,0),请回答以下问题.
(1)求抛物线与x轴的另一个交点坐标;
(2)一元二次方程ax2+bx+c=0(a≠0)的解为;
(3)不等式ax2+bx+c<0(a≠0)的解集是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com