精英家教网 > 初中数学 > 题目详情

【题目】如图,中,DEF分别为ABBCCA上的点,且

(1)求证:

(2),求的度数.

【答案】(1)证明见解析;(2)55°.

【解析】

1根据三角形外角的性质可得到∠CEF=BDE可证△BDE≌△CEF

2)由(1)可得DE=FE即△DEF是等腰三角形由等腰三角形的性质可求出∠B=70°,即∠DEF=B=70°,从而求出∠EDF的度数

1∵∠DEC=B+∠BDE=CEF+∠DEFDEF=B∴∠CEF=BDE

AB=AC∴∠C=B

又∵CE=BD∴△BDE≌△CEF

2∵△BDE≌△CEFDE=FE

DEF是等腰三角形∴∠EDF=EFD

AB=ACA=40°,∴∠B=70°.

DEF=B∴∠DEF=70°,∴∠EDF=EFD=×180°﹣70°)=55°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.

(1)求证:∠1=∠CAD;
(2)若AE=EC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)
(1)求桂味和糯米糍的售价分别是每千克多少元;
(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,DAB上的点,过点DBC于点F,交AC的延长线于点E,连接CD,则下列结论正确的有( )

DCB=B;②CD=AB;③ADC是等边三角形;④若E=30°,则DE=EF+CF

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点F,G分别在ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,BAF=CAEB=D

(1)求证:BC=DE;

(2)若B=35°AFB=78°,直接写出DGB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,该抛物线与x轴的一个交点为(﹣1,0),请回答以下问题.

(1)求抛物线与x轴的另一个交点坐标
(2)一元二次方程ax2+bx+c=0(a≠0)的解为
(3)不等式ax2+bx+c<0(a≠0)的解集是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图①,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案