【题目】用适当的方法解一元二次方程
(1)x2+3x+1=0
(2)(x﹣1)(x+2)=2(x+2)
【答案】
(1)解:∵a=1,b=3,c=1,
∴b2﹣4ac=9﹣4×1×1=5>0,
∴x=
∴x1= ,x2= ;
(2)解:分解因式得:(x+2)(x﹣1﹣2)=0,
可得x+2=0或x﹣3=0,
解得:x1=﹣2,x2=3
【解析】(1)公式法求解可得;(2)因式分解法求解可得.
【考点精析】掌握公式法和因式分解法是解答本题的根本,需要知道要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势.
科目:初中数学 来源: 题型:
【题目】已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=x的图象相交于点(2,a),求:
(1)a的值.
(2)k,b的值.
(3)这两个函数图象与x轴所围成的三角形的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有两个与,保持不动,且的一边,另一边DE与直线OB相交于点F.
若,,解答下列问题:
如图,当点E、O、D在同一条直线上,即点O与点F重合,则______;
当点E、O、D不在同一条直线上,画出图形并求的度数;
在的前提下,若,,且,请直接写出的度数用含、的式子表示.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司研发1000件新产品,需要精加工后才能投放市场.现在甲、乙两个工厂加工这批产品,已知甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天,而乙工厂每天加工的件数是甲工厂每天加工件数的1.25倍,公司需付甲工厂加工费用每天100元,乙工厂加工费用每天125元.
(1)甲、乙两个工厂每天各能加工多少件新产品?
(2)两个工厂同时合作完成这批产品,共付加工费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数 | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
(1)请你估计,当n很大时,摸到白球的频率将会接近 (精确到0.1).
(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是 .
(3)试估算口袋中黑、白两种颜色的球有多少只.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长是2,D,E分别为AB,AC的中点,延长BC至点F,使CF=BC连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:
文文:“过点A作BC的中垂线AD,垂足为D”;
彬彬:“作△ABC的角平分线AD”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是按规律摆放在墙角的一些小正方体,从上往下分别记为第一层,第二层,第三层,…,第n层.
(1)第三层有________个小正方体;
(2)从第四层至第六层(含第四层和第六层)共有________个小正方体;
(3)第n层有________个小正方体;
(4)若每个小正方体边长为a分米,共摆放了n层,则要将摆放的小正方体能看到的表面部分涂上防锈漆,则防锈漆的总面积为________平方分米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com