精英家教网 > 初中数学 > 题目详情

【题目】1)在图(1)中编号①②③④的四个三角形中,关于y轴对称的两个三角形的编号为_________;关于x轴对称的两个三角形的编号为___________

2)在图(2)中,画出ΔABC关于x轴对称的图形ΔA1B1C1

【答案】(1)①②、③④;①③、②④;(2)见解析

【解析】

1)根据轴对称图形的性质得出关于x轴或y轴对称的图形.

2)再根据关于x轴对称的图形的特点画出ABC关于x轴对称的图形A1B1C1

1)∵①与②,③与④图形中各对应点关于y轴对称,
∴①与②或③与④关于y轴对称;
∵①与③,②与④图形中各对应点关于x轴对称,
∴①与③或②与④关于x轴对称.
故答案为:①②或③④,①③或②④.
2)如图,由图可知,A121),B113),C144).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列解题过程:

===-2

==

请回答下列问题:

1)观察上面的解题过程,请直接写出式子=   

2)观察上面的解题过程,请直接写出式子=   

3)利用上面所提供的解法,请求+···+的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y1=ax2x+cx轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GMx轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2

(1)求抛物线y2的解析式;

(2)如图2,在直线l上是否存在点T,使TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;

(3)点P为抛物线y1上一动点,过点Py轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与AMG全等,求直线PR的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,ABC=30°,CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;

(2)如图2,当点E在△ABC内部时,猜想EDEB数量关系,并加以证明;

(3)如图3,当点E在△ABC外部时,EHAB于点H,过点EGEAB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形ABC中,∠ABC=90°DAC边上的中点,过D点作DEDF,交AB于点E,交BC于点F,若AE=8FC=6.

1)求EF的长.

2)求四边形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.

(1)求证:DE=CE.

(2)若∠CDE=35°,求∠A 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,AC=6,BC=8,ADBAC的平分线.若PQ分别是ADAC上的动点,则PC+PQ的最小值是(

A. B. 4 C. D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知都是等腰直角三角形,点D是直线BC上的一动点(点D不与BC重合),连接CE

1)在图1中,当点D在边BC上时,求证:

2)在图2中,当点D在边BC的延长线上时,结论是否还成立?若不成立,请猜想BCCECD之间存在的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是(  )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步练习册答案