【题目】如图,在平面直角坐标系中,有一,且,,,已知是由绕某点顺时针旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出顺时针旋转90°、180°的三角形;
(3)设两直角边、、斜边,利用变换前后所形成的图案验证勾股定理.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,
且∠ABM=∠BAM,连接BM,MN,BN.
(1)求证:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有大小两种盛酒的桶,已知10个大桶加上2个小桶可以盛酒6斛(斛,音hu,是古代的一种容量单位),3个大桶加上15个小桶也可以盛酒6斛.
(1)求1个大桶可盛酒多少斛?
(2)分析2个大桶加上3个小桶可以盛酒2斛吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,等腰直角三角形中,,,直线经过点,过作于,过作于.
(1)求证:.
(2)已知直线与轴交于点,将直线绕着点顺时针旋转45°至,如图2,求的函数解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.
(1)判断3253和254514是否为“十三数”,请说明理由.
(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.
①求证:任意一个四位“间同数”能被101整除.
②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】省城太原某大型超市计划在12月23日推出“十周年”店庆促销活动,该超市为本次促销活动设计了两种促销方案.方案一:全场商品全部打8.5折;方案二:商品总价不超过200元时,不打折,超过200元时,超过的部分打7折.小颖和爸爸妈妈准备在该超市促销活动期间去该超市购物,所购商品总价一定会超过200元.
(1)小颖和爸爸妈妈购买的商品总价为元,按方案一应该支付 元;按方案二应该支付 元;(用含的代数式表示)
(2)当小颖和爸爸妈妈购买的商品总价为多少元时,按方案一或方案二支付的金额都一样?
(3)若小颖和爸爸妈妈购买的商品总价为500元,请你帮助小颖计算一下,按哪种方案支付更划算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式,并写出的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】读题画图计算并作答
画线段AB=3 cm,在线段AB上取一点K,使AK=BK,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线取一点D,使AD=AB.
(1)求线段BC、DC的长?
(2)点K是哪些线段的中点?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com