精英家教网 > 初中数学 > 题目详情

【题目】如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是( )

A. AB=CD,AD=BC,AC=BD B. AC=BD,∠B=∠C=90° C. AB=CD,∠B=∠C=90° D. AB=CD,AC=BD

【答案】D

【解析】

试题A、ABCDADBC∴四边形ABCD是平行四边形,

ACBD∴四边形ABCD是矩形,

故能判定门框合格;

B、在RtABCRtDCB中,

RtABCRtDCB(HL),

ABCD

∵∠B=∠C90°,ABCD

∴四边形ABCD是平行四边形,

∴四边形ABCD是矩形,

故能判定门框合格;

C、∵∠B=∠C90°,ABCD

ABCD

∴四边形ABCD是平行四边形,

∵∠B=∠C90°,

∴四边形ABCD是矩形,

故能判定门框合格;

D、当四边形ABCD是等腰梯形时,也满足ABCDACBD,故不能判定门框合格.

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC△DBE均为等腰直角三角形.

(1)求证:AD=CE;

(2)求证:ADCE垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地,乙先出发一段时间后甲才出发,设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),yt的函数关系如图1所示,其中点C的坐标为(,),请解决以下问题:

(1)甲比乙晚出发几小时?

(2)分别求出甲、乙二人的速度;

(3)丙骑摩托车与乙同时出发,从N地沿同一条公路匀速前往M地,若丙经过h与乙相遇.

①设丙与M地的距离为S(km),行驶的时间为t(h),求St之间的函数关系式(不用写自变量的取值范围)

②丙与乙相遇后再用多少时间与甲相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

(1)出发2秒后,求PQ的长;

(2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

(3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).

(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.
(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E为ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则ABCD的面积为(

A.30
B.27
C.14
D.32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40千克,A型机器人搬运1200千克所用时间与B型机器人搬运800千克所用时间相等.设B型机器人每小时搬运化工原料x千克,根据题意可列方程为(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果批发市场规定,一次购买苹果不超过100kg(包括100kg),批发价为5元,如果一次购买100kg以上苹果,超过100kg的部分苹果价格打8折.

(I)请填写下表

购买量/kg

0

50

100

150

200

付款金额/元

0

250

_

700

__

(Ⅱ)写出付款金额关于购买量的函数解析式;

(Ⅲ)如果某人付款2100元,求其购买苹果的数量.

查看答案和解析>>

同步练习册答案