精英家教网 > 初中数学 > 题目详情

【题目】如图,以菱形AOBC的顶点O为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=5,点C的坐标为(8,0),则点A的坐标为

【答案】(4,3)
【解析】解:如图,连接AB,交OC于D,
∵点C(8,0),
∴OC=8,
∵四边形AOBC是菱形,
∴OD= OC= ×8=4,AB⊥OC,
∵OB=5,
∴OA=OB=5,
在Rt△AOD中,AD= = =3,
∴点A的坐标为(4,3).
所以答案是:(4,3).

【考点精析】通过灵活运用菱形的性质,掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知BE=CF,AB∥CD,AB=CD.求证:AF∥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:

(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?

(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?

(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某地区3500名初中毕业生的数学成绩,从中抽出20本试卷,每本30份,其中个体是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A43),与y轴的负半轴交于点B,且OA=OB

1)求函数y=kx+by=的表达式;

2)已知点C05),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长13米的梯子AB斜靠在墙上,这时梯子底端距墙底为5米,如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向也将滑动多少米?(精确到0.01米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠C=90°,ab=3:4,运用计算器计算,∠A的度数(精确到1°)(  )
A.30°
B.37°
C.38°
D.39°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).
(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D. ①若∠BAO=60°,则∠D=°.
②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由
(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,则∠D=°.
(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OECB的延长线上,连结ACAEACB=BAE=45°

1)求证:AE是⊙O的切线;

2)若AB=ADAC=tanADC=3BE的长

查看答案和解析>>

同步练习册答案