【题目】某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数: .
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
【答案】(1)35;(2)30或40;(3)3600.
【解析】试题分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;根据抛物线的性质和图象,求出每月的成本.
(1)由题意可得:
w=(x-20)y=(x-20)(-10x+500)=-10x2+700x-10000=-10(x-35)2+2250,
答:当销售单价定为35元时,每月可获得最大利润.
(2)由题意可知:
-10x2+700x-10000=2000
解这个方程得:x1=30,x2=40.
∵a=-10<0,
∴抛物线开口向下,
∴当30≤x≤40时,w≥2000,
∵x≤32,
∴当30≤x≤32时,w≥2000,
设成本为P(元),由题意,得:P=20(-10x+500)=-200x+10000,
∵a=-200<0,
∴P随x的增大而减小,
∴当x=32时,P最小=3600,
答:李明想要每月获得2000元的利润,销售单价应定为30元或40元.想要每月获得的利润不低于2000元,每月的成本最少为3600元.
科目:初中数学 来源: 题型:
【题目】正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.
(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为: ;
(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转900,得到线段FQ,连接EQ,请猜想EF、EQ、BP三者之间的数量关系,并证明你的结论;
(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出EF、EQ、BP三者之间的数量关系: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了了解2018年度下学期七年级数学学科期末考试各分数段成绩的分布情况,从全校七年级1200名学生中随机抽取了200名学生的期末数学成绩进行调查,在这次调查中,样本是( )
A. 1200名学生 B. 200名学生
C. 1200名学生的期末数学成绩 D. 200名学生的期末数学成绩
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com