【题目】如图,在边长为6的正方形ABCD的一边AB在线段MN上移动,连接MD,NC并延长交于点E,MN=18.
(1)当AM=4时,求CN长;
(2)若∠E=90°,求证AM=BN;
(3)△MNE能否为等腰三角形?若能,求出AM的长,若不能,请说明理由.
【答案】(1)10;(2)见解析;(3)△MNE能为等腰三角形,AM=6.
【解析】
(1)先求BN的长,由勾股定理可求CN的长;
(2)通过证明△ADM∽△BNC,可得,可求AM=6=BN;
(3)分三种情况讨论,由全等三角形的判定和性质和等腰三角形的性质可求解.
(1)∵四边形ABCD是正方形,
∴AB=AD=BC=6,∠DAB=∠ABC=90°,
∵AM=4,MN=18,AB=6,
∴BN=8,
在Rt△BCN中,CN==10;
(2)∵∠E=90°,
∴∠M+∠N=90°,且∠M+∠ADM=90°,
∴∠N=∠ADM,且∠DAM=∠CBN=90°,
∴△ADM∽△BNC,
∴,
∴
∴36=AM×BN=AM(12﹣AM)
∴AM=6,
∴BN=6,
∴AM=BN;
(3)△MNE能为等腰三角形,
若EM=EN,
∴∠M=∠N,且AD=BC,∠DAM=∠CBN,
∴△ADM≌△BCN(AAS)
∴AM=BN,
∵MN=AB+AM+BN=18,AB=6,
∴2AM=12,
∴AM=6;
若MN=EN=18,
∴∠M=∠E,
∵CD∥MN,
∴∠EDC=∠M=∠E,
∴EC=CD=6,
∴CN=12,
∴BN=,
∴AM=MN﹣AB﹣BN=12﹣6,
若MN=EM=18,
∴∠N=∠E,
∵CD∥MN,
∴∠ECD=∠N=∠E,
∴ED=CD=6,
∴DM=12,
∴AM=.
科目:初中数学 来源: 题型:
【题目】如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则Sn=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,则BD=_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD(AD>AB)中,P为BC边上的一点,AP=AD,过点P作PE⊥PA交CD于E,连接AE并延长交BC的延长线于F.
(1)求证:△APE≌△ADE;
(2)若AB=3,CP=1,试求BP,CF的长;
(3)在(2)的条件下,连结PD,若点M为AP上的动点,N为AD延长线上的动点,且PM=DN,连结MN交PD于G,作MH⊥PD,垂足为H,试问当M、N在移动过程中,线段GH的长度是否发生变化?若变化,请说明理由,若不变,求出GH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.
(1)求证:CF为⊙O的切线;
(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.
【答案】30°
【解析】(1)连结OC,如图,由于∠A=∠OCA,则根据三角形外角性质得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根据平行线的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根据切线的判定定理得CF为⊙O的切线;
(2)根据三角形的内角和得到∠F=30°,根据等腰三角形的性质得到AC=CF,连接AD,根据平行线的性质得到∠DAF=∠F=30°,根据全等三角形的性质得到AD=AC,由菱形的判定定理即可得到结论.
答:
(1)证明:连结OC,如图,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF为⊙O的切线;
(2)当∠CAB的度数为30°时,四边形ACFD是菱形,理由如下:
∵∠A=30°,
∴∠COF=60°,
∴∠F=30°,
∴∠A=∠F,
∴AC=CF,
连接AD,
∵AB是⊙O的直径,
∴AD⊥BD,
∴AD∥CF,
∴∠DAF=∠F=30°,
在△ACB与△ADB中,
,
∴△ACB≌△ADB,
∴AD=AC,
∴AD=CF,
∵AD∥CF,
∴四边形ACFD是菱形。
故答案为:30°.
【题型】解答题
【结束】
22
【题目】经市场调查,某种商品在第x天的售价与销量的相关信息如下表;已知该商品的进价为每件30元,设销售该商品每天的利润为y元.
(1)求出y与x的函数关系式
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?
(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.
(1)在旋转过程中,
①当A,D,M三点在同一直线上时,求AM的长.
②当A,D,M三点为同一直角三角形的顶点时,求AM的长.
(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC.以下结论:①>0:②ac=b﹣1;③4a+c>0;④b≠2.其中正确的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com