精英家教网 > 初中数学 > 题目详情

【题目】如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.

【答案】2

【解析】

PA、PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理,可得PA=PB,又由PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,根据根与系数的关系,可求得PAPB的长,又由CD切⊙0于点E,即可得△PCD的周长等于PA+PB.

解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,

∴PA+PB=m,PAPB=m﹣1,

∵PA、PB切⊙O于A、B两点,

∴PA=PB=

=m﹣1,

即m2﹣4m+4=0,

解得:m=2,

∴PA=PB=1,

∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,

∴AD=ED,BC=EC,

∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y1=x+mx轴、y轴交于点AB,与双曲线分别交于点CD,且点C的坐标为(-1,2)

(1)分别求出直线AB及双曲线的解析式;

(2)求出点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,F,G是直径AB上的两点,C,D,E是半圆上的三点,如果弧AC的度数为60°,弧BE的度数为20°,CFA=DFB,DGA=EGB.求∠FDG的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1过点A(0,4)与点D(4,0),直线l2:y=x+1与x轴交于点C,两直线l1,l2相交于点B.

(1)求直线l1的函数表达式;

(2)求点B的坐标;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,在同一平面内,将绕点旋转到的位置,使得,则

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设AP两点间的距离为x

探究:

1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察到的结论;

2)当点Q在边CD上时,设四边形PBCQ的面积为y,求yx之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应x的值;如果不可能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.

(1)试判断直线BC与⊙O的位置关系,并说明理由;

(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】9分)为弘扬 东亚文化,某单位开展了东亚文化之都演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.

1)请直接写出第一位出场是女选手的概率;

2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并完成相应的任务.

基本性质:三角形中线等分三角形的面积.

如图,的边上的中线,

理由:过点于点

的边上的中线.

又∵

∴三角形中线等分三角形的面积.

任务:

1)如图,延长的边到点,使,连接,则的数量关系为_________.

2)如图,点的边上任意一点,点分别是线段的中点,且的面积为,请同学们借助上述结论求的面积.

查看答案和解析>>

同步练习册答案