精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l1过点A(0,4)与点D(4,0),直线l2:y=x+1与x轴交于点C,两直线l1,l2相交于点B.

(1)求直线l1的函数表达式;

(2)求点B的坐标;

(3)求△ABC的面积.

【答案】(1) y=-x+4;(2)点B的坐标为(2,2);(3)6.

【解析】

(1)利用待定系数法即可求出直线l1的函数关系式为y=-x+4;

(2)解方程组即可确定B点坐标;

(3)求出点C坐标,根据SABC=SACD-SBCD进行计算即可得.

(1)设直线l1的函数表达式为y=kx+b,

根据题意,得,解得:

所以直线l1的函数表达式为y=-x+4;

(2)根据题意,得,解得:

所以点B的坐标为(2,2);

(3)直线y=x+1x轴交于点C,所以点C坐标为(-2,0),

所以CD=6,

所以,SABC=SACD-SBCD==6.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线 ABCD 相交于 O,∠BOC70°OE 是∠BOC 的角平分线,OFOE的反向延长线.

(1)求∠1,∠2,∠3 的度数;

(2)判断 OF 是否平分∠AOD,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:y=﹣x+bx轴,y轴的交点分别为A,B,直线l1:y=x+1y轴交于点C,直线l与直线ll的交点为E,且点E的横坐标为2.

(1)求实数b的值和点A的坐标;

(2)设点D(a,0)为x轴上的动点,过点Dx轴的垂线,分别交直线l与直线ll于点M、N,若以点B、O、M、N为顶点的四边形是平行四边形,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】嘉淇准备完成题目:化简:,发现系数印刷不清楚.

(1)他把猜成3,请你化简:(3x2+6x+8)–(6x+5x2+2);

(2)他妈妈说:你猜错了,我看到该题标准答案的结果是常数.通过计算说明原题中是几?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式中:

3x=﹣4系数化为1x=﹣

52x移项得x52

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括号得4x23x91

其中正确的个数有(  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”. 应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为(

A.(60°,4)
B.(45°,4)
C.(60°,2
D.(50°,2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方

向依次不断移动,每次移动1个单位,其行走路线如下图所示.

(1)填写下列各点的坐标:A4( )A8( )A12( )

(2)写出点A4n的坐标(n是正整数)

(3)指出蚂蚁从点A100到点A101的移动方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承优秀传统文化,我市组织了一次初三年级1 200名学生参加的汉字听写大赛,为了更好地了解本次大赛的成绩分布情况,随机抽取了100名学生的成绩(满分50),整理得到如下的统计图表:

成绩()

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

人数

1

2

3

3

6

7

5

8

15

9

11

12

8

6

4

成绩分组

频数

频率(百分比)

35≤x<38

3

0.03

38≤x<41

a

0.12

41≤x<44

20

0.20

44≤x<47

35

0.35

47≤x≤50

30

b

请根据所提供的信息解答下列问题:

(1)频率统计表中a________b_______

(2)请补全频数分布直方图;

(3)请根据抽样统计结果,估计该次大赛中成绩不低于41分的学生有多少人?

查看答案和解析>>

同步练习册答案