精英家教网 > 初中数学 > 题目详情

【题目】如图,直线 ABCD 相交于 O,∠BOC70°OE 是∠BOC 的角平分线,OFOE的反向延长线.

(1)求∠1,∠2,∠3 的度数;

(2)判断 OF 是否平分∠AOD,并说明理由.

【答案】1)∠1=35°,∠2=110°,∠3=35°;(2OF平分AOD

【解析】

1)根据邻补角的定义即可求得∠2的度数根据角平分线的定义和平角的定义即可求得∠3的度数

2求出∠AOF和∠3的度数即可说明

1∵∠BOC+∠2=180°,BOC=70°,∴∠2=180°﹣70°=110°;

OE是∠BOC的角平分线∴∠1=35°.

∵∠1+∠2+∠3=180°,∴∠3=180°﹣12=180°﹣35°﹣110°=35°.

2∵∠2+∠3+∠AOF=180°,∴∠AOF=180°﹣23=180°﹣110°﹣35°=35°,∴∠AOF=3=35°,OF平分∠AOD

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为改善生态环境,防止水土流失,某村计划在江汉堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:

甲林场

乙林场

购树苗数量

销售单价

购树苗数量

销售单价

不超过1000棵时

4元/棵

不超过2000棵时

4元/棵

超过1000棵的部分

3.8元/棵

超过2000棵的部分

3.6元/棵

设购买白杨树苗x棵,到两家林场购买所需费用分别为y(元)、y(元).
(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为元,若都在乙林场购买所需费用为元;
(2)分别求出y、y与x之间的函数关系式;
(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1

(1)当∠A为70°时,

∵∠ACD -∠ABD=∠____________

∴∠ACD -∠ABD=______________°

∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线

∴∠A1CD -∠A1BD=(∠ACD-∠ABD)

∴∠A1=___________°;

(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An 的数量关系____________;

(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=  

(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q —∠A1的值为定值.

其中有且只有一个是正确的,请写出正确的结论,并求出其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx+b与y=kbx,它们在同一坐标系内的图象可能为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两车间同时开始加工一批零件,从开始加工到加工完这批零件,甲车间工作了9小时,乙车间在中途停工一段时间维修设备,修好后马上按停工前的工作效率继续加工,直到与甲车间同时完成这批零件的加工任务为止,设甲、乙两车间各自加工零件的数量为y(个),甲车间加工的时间为x(时),yx之间的函数图象如图所示,下列说法其中正确的个数为(  )

①这批零件的总个数为1260个;

②甲车间每小时加工零件个数为80个;

③乙车间维修设备后,乙车间加工零件数量yx之间的函数关系式y=60x﹣120;

④乙车间维修设备用了2个小时

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,点QAB边上一点,点FBC边上一点连接DQ、DFQF.

(1)如图1,若∠ADQ=FDQ,FQD=90°,求证:AQ=BQ;

(2)如图2,在(1)的条件下,∠BAD=120°,对角线AC、BD相交于点P,以点P为顶点作∠MPN=60°,PMAB交于点M,PNAD交于点N,求证:DN+QM=AB;

(3)如图3,在(1)(2)的条件下,延长NPBC于点E,延长CN到点K,使CK=CA,连接AK并延长和CD的延长线交于点T,若AM:DN=1:5,S四边形MBEP=12,求线段DT的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1过点A(0,4)与点D(4,0),直线l2:y=x+1与x轴交于点C,两直线l1,l2相交于点B.

(1)求直线l1的函数表达式;

(2)求点B的坐标;

(3)求△ABC的面积.

查看答案和解析>>

同步练习册答案