1£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=ax2+bx+c¾­¹ýA £¨1£¬0£©¡¢B£¨0£¬3£©¼°C£¨3£¬0£©µã£¬¶¯µãD´ÓÔ­µãO¿ªÊ¼ÑØOB·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈÒÆ¶¯£¬¶¯µãE´ÓµãC¿ªÊ¼ÑØCO·½ÏòÒÔÿÃë1¸ö³¤¶Èµ¥Î»Òƶ¯£¬¶¯µãD¡¢Eͬʱ³ö·¢£¬µ±¶¯µãEµ½´ïÔ­µãOʱ£¬µãD¡¢EÍ£Ö¹Ô˶¯£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°¶¥µãPµÄ×ø±ê£»
£¨2£©ÈôF£¨-1£¬0£©£¬Çó¡÷DEFµÄÃæ»ýSÓëEµãÔ˶¯Ê±¼ätµÄº¯Êý½âÎöʽ£»µ±tΪºÎֵʱ£¬¡÷DEFµÄÃæ»ý×î´ó£¿×î´óÃæ»ýÊǶàÉÙ£¿
£¨3£©µ±¡÷DEFµÄÃæ»ý×î´óʱ£¬Å×ÎïÏߵĶԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãN£¬Ê¹¡÷EBNÊÇÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öNµãµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£¬¸ù¾ÝÅä·½·¨£¬¿ÉµÃ¶¥µã×ø±ê£»
£¨2£©¸ù¾ÝÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃº¯Êý½âÎöʽ£¬¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ý¹´¹É¶¨ÀíµÄÄæ¶¨Àí£¬¿ÉµÃ¹ØÓÚaµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃNµã×ø±ê£®

½â´ð ½â£º£¨1£©½«A £¨1£¬0£©¡¢B£¨0£¬3£©¼°C£¨3£¬0£©´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$£¬
Å×ÎïÏߵĽâÎöʽΪy=x2-4x+3£¬
Åä·½£¬µÃy=£¨x-2£©2-1£¬¶¥µãPµÄ×ø±êΪ£¨2£¬-1£©£»
£¨2£©Èçͼ1£¬
ÓÉÌâÒ⣬µÃ
CE=t£¬OE=3-t£¬FE=4-t£¬OD=t£®
S=$\frac{1}{2}$FE•OD=$\frac{1}{2}$£¨4-t£©t=-$\frac{1}{2}$t2+2t=-$\frac{1}{2}$£¨t-2£©2+2£¬
µ±t=2ʱ£¬S×î´ó=2£»
£¨3£©µ±¡÷DEFµÄÃæ»ý×î´óʱ£¬E£¨1£¬0£©£¬ÉèN£¨2£¬a£©£¬
BN2=4+£¨a-3£©2£¬EN2=1+a2£¬BE2=1+9=10£¬
¢Ùµ±BN2+EN2=BE2ʱ£¬4+9-6a+a2+a2+1=10£¬»¯¼ò£¬µÃ
a2-3a+2=0£¬½âµÃa=2£¬a=1£¬N£¨2£¬2£©£¬N£¨2£¬1£©£»
¢Úµ±BN2+BE2=EN2ʱ£¬4+9-6a+a2+10=1+a2£¬»¯¼ò£¬µÃ
6a=22£¬½âµÃa=$\frac{11}{3}$£¬N£¨2£¬$\frac{11}{3}$£©£»
¢Ûµ±BE2+EN2=BN2ʱ£¬1+a2+10=4+9-6a+a2£¬
»¯¼ò£¬µÃ
6a=2£¬½âµÃa=$\frac{1}{3}$£¬N£¨2£¬$\frac{1}{3}$£©£¬
×ÛÉÏËùÊö£ºNµãµÄ×ø±ê£¨2£¬2£©£¬£¨2£¬1£©£¬£¨2£¬$\frac{11}{3}$£©£¬£¨2£¬$\frac{1}{3}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÀûÓôý¶¨ÏµÊýÇóº¯Êý½âÎöʽ£»ÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇóÃæ»ýµÄ×î´óÖµ£»ÀûÓù´¹É¶¨ÀíµÄÄæ¶¨ÀíµÃ³ö¹ØÓÚaµÄ·½³ÌÊǽâÌâ¹Ø¼ü£¬Òª·ÖÀàÌÖÂÛ£¬ÒÔ·ÀÒÅ©£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨1£¬1£©£¬B£¨4£¬3£©£¬µãPÔÚyÖáÉÏÔ˶¯£¬µ±µãPµ½A¡¢BÁ½µã¾àÀëÖ®²îµÄ¾ø¶ÔÖµ×î´óʱ£¬µãPµÄ×ø±êÊÇ£¨0£¬$\frac{1}{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÊµÊý-5£¬0£¬-$\sqrt{2}$£¬3ÖÐ×î´óµÄÊýÊÇ£¨¡¡¡¡£©
A£®-5B£®0C£®-$\sqrt{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬A£¨1£¬2£©£¬B£¨3£¬1£©£¬C£¨-2£¬-1£©£®
£¨1£©ÖµÍ¼Öл­³ö¡÷ABC¹ØÓÚyÖá¶Ô³ÆµÄ¡÷A1B1C1£®
£¨2£©·Ö±ðд³öA1¡¢B1¡¢C1ÈýµãµÄ×ø±ê£®
£¨3£©ÇóS¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â·½³Ì£º
£¨1£©x-£¨7-8x£©=3£¨x-2£©
£¨2£©$\frac{3x+1}{2}$-$\frac{3x-2}{10}$=2-$\frac{2x+3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¼ÆËãÌ⣺$\sqrt{3}$£¨2sin60¡ã-cos45¡ã£©+sin45¡ãtan60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÒÑÖªAB=16cm£¬CÊÇÏß¶ÎABÉÏÒ»µã£¬ÇÒAC=10cm£¬µãDÊÇÏß¶ÎACµÄÖе㣬µãEÊÇÏß¶ÎBCÉÏÒ»µã£¬ÇÒCE=$\frac{1}{3}$CB£¬ÇóÏß¶ÎDEµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôa-b=$\frac{1}{2}$£¬ÇÒa2-b2=$\frac{1}{4}$£¬Ôòa+bµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{2}$B£®$\frac{1}{2}$C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®»­³öÈçͼËùʾ¼¸ºÎÌåµÄÖ÷ÊÓͼ¡¢×óÊÓͼºÍ¸©ÊÓͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸