精英家教网 > 初中数学 > 题目详情
10.若a-b=$\frac{1}{2}$,且a2-b2=$\frac{1}{4}$,则a+b的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1D.2

分析 已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出a+b的值.

解答 解:∵a-b=$\frac{1}{2}$,a2-b2=(a+b)(a-b)=$\frac{1}{4}$,
∴a+b=$\frac{1}{2}$,
故选B

点评 此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知反比例函数y=$\frac{m-3}{x}$的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为10,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,已知抛物线y=ax2+bx+c经过A (1,0)、B(0,3)及C(3,0)点,动点D从原点O开始沿OB方向以每秒1个单位长度移动,动点E从点C开始沿CO方向以每秒1个长度单位移动,动点D、E同时出发,当动点E到达原点O时,点D、E停止运动.
(1)求抛物线的解析式及顶点P的坐标;
(2)若F(-1,0),求△DEF的面积S与E点运动时间t的函数解析式;当t为何值时,△DEF的面积最大?最大面积是多少?
(3)当△DEF的面积最大时,抛物线的对称轴上是否存在一点N,使△EBN是直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,AO⊥CO,DO⊥BO.若∠DOC=30°,则∠AOB的度数为150°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知点C是线段AB的中点,点D是线段AC的中点,点E是线段BC的中点.
(1)若线段DE=11cm,求线段AB的长.
(2)若线段CE=4cm,求线段DB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.操作:某数学兴趣小组在研究用一副三角板拼角时,小明、小亮分别拼出图1、图2所示的两种图形,如图1,小明把30°和90°的角按如图1方式拼在一起;小亮把30°和90°的角按如图2方式拼在一起,并在各自所拼的图形中分别作出∠AOB、∠COD的平分线OE、OF.小明很容易地计算出图1中∠EOF=60°.

计算:请你计算出图2中∠EOF=75度.
归纳:通过上面的计算猜一猜,当有公共顶点的两个角∠α、∠β有一条边重合,且这两个角在公共边的异侧时,则这两个角的平分线所夹的角=$\frac{1}{2}∠α+\frac{1}{2}∠β$.(用含α、β的代数式表示)
拓展:小明把图1中的三角板AOB绕点O顺时针旋转90°后得到图3,小亮把图2中的三角板AOB绕点O顺时针旋转90°后得到图4(两图中的点O、B、D在同一条直线上).在图3中,易得到∠EOF=∠DOF-∠BOE=$\frac{1}{2}$∠COD-$\frac{1}{2}$∠AOB=45°-15°=30°;仿照图3的作法,请你通过计算,求出图4中∠EOF的度数(写出解答过程).
反思:通过上面的拓展猜一猜,当有公共顶点的两个角∠α、∠β(∠α>∠β)有一条边重合,且这两个角在公共边的同侧时,则这两个角的平分线所夹的角=$\frac{1}{2}∠α-\frac{1}{2}∠β$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.己知多项式3x2+my-8与多项式-nx2+2y+7的和中不含有x2,y项,则(  )
A.m=-2,n=3B.m=2,n=-3C.m=0,n=0D.m=-3,n=2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.在△ABC中,若|sinA-$\frac{1}{2}$|+($\frac{\sqrt{2}}{2}$-cosB)2=0,则∠C的度数是(  )
A.45°B.75°C.105°D.120°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.一列慢车从甲地匀速驶往乙地,一列快车从乙地匀速驶往甲地,两车同时出发相向而行,图1表示两车距离甲地的路程y(km)与出发时间x(h)的函数图象,图2表示两车之间的路程s(km)与出发时间x(h)的函数图象.

(1)甲乙两地间的路程为180km,图2中A点的实际意义是经过1.2小时两车相遇;
(2)求快车和慢车的速度;
(3)求点B的坐标.

查看答案和解析>>

同步练习册答案