精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD的对角线相交于点O,且点OBD的中点,若ABAD5BD8,∠ABD=∠CDB,则四边形ABCD的面积为(  )

A.40B.24C.20D.15

【答案】B

【解析】

根据等腰三角形的性质得到ACBD,∠BAO=DAO,得到AD=CD,推出四边形ABCD是菱形,根据勾股定理得到AO=3,于是得到结论.

ABAD,点OBD的中点,

ACBD,∠BAO=∠DAO

∵∠ABD=∠CDB

ABCD

∴∠BAC=∠ACD

∴∠DAC=∠ACD

ADCD

ABCD

∴四边形ABCD是菱形,

AB5BOBD4

AO3

AC2AO6

∴四边形ABCD的面积6×824

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下列例题的解题过程,并完成相关问题

例:如图,在四边形ABCD中,ADBC,∠B90°AB8 cmAD12cmBC18cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以2cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQCDPQCD,分别经过多长时间?为什么?

解:设经过ts时,PQCDPQCD,此时四边形PQCD为平行四边形.

PD=(12tcmCQ2t cm

12t2t.∴t4

∴当t4时,PQCD,且PQCD

设经过ts时,PQCD,分别过点PDBC边的垂线PEDF,垂足分别为EF

CFEQ时,四边形PQCD为梯形(腰相等)或者平行四边形.

∵∠B=∠A=∠DFB90°

∴四边形ABFD是矩形.∴ADBF

AD12 cmBC18 cm

CFBCBF6 cm

当四边形PQCD为梯形(腰相等)时,

PD2BCAD)=CQ

∴(12t)+122t.∴t8

∴当t8时,PQCD

当四边形PQCD为平行四边形时,由知当t4时,PQCD

综上,当t4时,PQCD;当t4t8时,PQCD

问题1:在整个运动过程中是否存在t值,使得四边形PQCD是菱形?若存在,请求出t值;若不存在,请说明理由.

问题2:从运动开始,当t取何值时,四边形PQBA是矩形?

问题3:在整个运动过程中是否存在t值,使得四边形PQBA是正方形?若存在,请求出t值;若不存在,请说明理由.

问题4:是否存在t,使得△DQC是等腰三角形?若存在,请求出t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知FGABCDAB,垂足分别为GD,∠1=∠2

求证:∠CED+ACB180°,

请你将小明的证明过程补充完整.

证明:∵FGABCDAB,垂足分别为GD(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已证)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).
(参考数据:sin37°≈ ,tan37°≈ ,sin65°≈ ,tan65°≈

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.

(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.

(2)求甲、乙第一次相遇的时间.

(3)直接写出乙回到侧门时,甲到侧门的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数y= (k>0,x>0)的图象经过点C,则k的值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料;

课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.

小方、小易和小红分别对网格进行了划分,结果如图①、图②、图③所示.

小方说:我们三个人的划分方法都是正确的,但是将小红的整个图形(图③)逆时针旋转90后得到的划分方法与我的划分方法(图①)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同,

老师说:小方说得对.

完成下列问题:

(1)图④的划分方法是否正确?

(2)判断图⑤的划分方法与图②小易的划分方法是否相同,并说明你的理由.

(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图⑥中画出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(a,b)在双曲线y= 上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是(
A.1月份
B.2月份
C.5月份
D.7月份

查看答案和解析>>

同步练习册答案