精英家教网 > 初中数学 > 题目详情
(2013•江宁区二模)如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.
(1)求该二次函数的关系式;
(2)结合图象,解答下列问题:
①当x取什么值时,该函数的图象在x轴上方?
②当-1<x<2时,求函数y的取值范围.
分析:(1)将A坐标代入二次函数解析式中,利用对称轴公式列出关系式,联立求出a与b的值,即可确定出二次函数解析式;
(2)①由二次函数图象与x轴的交点及对称轴求出另一个交点坐标,利用图象即可得出,该函数的图象在x轴上方时x的范围;
②根据二次函数的性质求出y的最大值,根据x的范围即可确定出y的范围.
解答:解:(1)根据题意可得:
a-b+3=0
-
b
2a
=1

解得:
a=-1
b=2

则二次函数解析式为y=-x2+2x+3=-(x-1)2+4;

(2)∵函数图象与x轴的一个交点坐标为A(-1,0),且对称轴为直线x=1,
∴函数图象与x轴的另一个交点为(3,0),
∴当-1<x<3 时,该函数的图象在x轴上方;

(3)∵函数的顶点坐标为(1,4),
∴当x=1时,y的最大值为4,
∴当-1<x<2时,函数y的取值范围为0<y≤4.
点评:此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•江宁区二模)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)如图,若将木条a绕点O旋转后与木条b平行,则旋转角的最小值为
15
15
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)已知⊙O1的半径是2cm,⊙O2的半径是3cm,若这两圆相交,则圆心距d(cm)的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),将△ABC绕点A逆时针旋转90°,则在△ABC扫过的区域中(不含边界上的点),到点O的距离为无理数的格点的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江宁区二模)如图1,在平面直角坐标系中,二次函数y=-x2-2x+2的图象与y轴交于点C,以OC为一边向左侧作正方形OCBA.

(1)判断点B是否在二次函数y=-x2-2x+2的图象上?并说明理由;
(2)用配方法求二次函数y=-x2-2x+2的图象的对称轴;
(3)如图2,把正方形OCBA绕点O顺时针旋转α后得到正方形A1B1C1O(0°<α<90°).
①当tanα﹦
12
时,二次函数y=-x2-2x+2的图象的对称轴上是否存在一点P,使△PB1C1为直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
②在二次函数y=-x2-2x+2的图象的对称轴上是否存在一点P,使△PB1C1为等腰直角三角形?若存在,请直接写出此时tanα的值;若不存在,请说明理由﹒

查看答案和解析>>

同步练习册答案