精英家教网 > 初中数学 > 题目详情

【题目】如图所示,ABC和ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.

(1)把ABC绕点A旋转到图1,BD,CE的关系是   (选填“相等”或“不相等”);简要说明理由;

(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90°时,在图2中作出旋转后的图形,PD=   ,简要说明计算过程;

(3)在(2)的条件下写出旋转过程中线段PD的最小值为   ,最大值为   

【答案】1BDCE的关系是相等;(2317

【解析】分析:(1)依据ABCADE是有公共顶点的等腰直角三角形,∠BAC=DAE=90°,即可BA=CA,BAD=CAE,DA=EA,进而得到ABD≌△ACE,可得出BD=CE;

(2)分两种情况:依据∠PDA=AEC,PCD=ACE,可得PCD∽△ACE,即可得到=进而得到PD=;依据∠ABD=PBE,BAD=BPE=90°,可得BAD∽△BPE,即可得到,进而得出PB=,PD=BD+PB=

(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在RtPED中,PD=DEsinPED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.

详解:(1)BD,CE的关系是相等.

理由:∵△ABCADE是有公共顶点的等腰直角三角形,∠BAC=DAE=90°,

BA=CA,BAD=CAE,DA=EA,

∴△ABD≌△ACE,

BD=CE;

故答案为:相等.

(2)作出旋转后的图形,若点CAD上,如图2所示:

∵∠EAC=90°,

CE=

∵∠PDA=AEC,PCD=ACE,

∴△PCD∽△ACE,

PD=

若点BAE上,如图2所示:

∵∠BAD=90°,

RtABD中,BD=,BE=AE﹣AB=2,

∵∠ABD=PBE,BAD=BPE=90°,

∴△BAD∽△BPE,

,即

解得PB=

PD=BD+PB=+=

故答案为:

(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.

如图3所示,分两种情况讨论:

RtPED中,PD=DEsinPED,因此锐角∠PED的大小直接决定了PD的大小.

①当小三角形旋转到图中ACB的位置时,

RtACE中,CE==4,

RtDAE中,DE=

∵四边形ACPB是正方形,

PC=AB=3,

PE=3+4=7,

RtPDE中,PD=

即旋转过程中线段PD的最小值为1;

②当小三角形旋转到图中AB'C'时,可得DP'为最大值,

此时,DP'=4+3=7,

即旋转过程中线段PD的最大值为7.

故答案为:1,7.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:

考试类别

平时考试

期中考试

期末考试

第一单元

第二单元

第三单元

第四单元

成绩(分)

85

78

90

91

90

94

(1)小明6次成绩的众数是   ,中位数是   

(2)求该同学这个同学这一学期平时成绩的平均数;

(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐徐州号高铁A复兴号高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.

(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;

(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某闭合电路中,其两端电压恒定,电流I(A)与电阻R(Ω)图象如图所示,回答问题:

(1)写出电流I与电阻R之间的函数解析式.
(2)如果一个用电器的电阻为5Ω,其允许通过的最大电流是1A,那么这个用电器接在这个闭合电路中,会不会烧毁?说明理由.
(3)若允许的电流不超过4A时,那么电阻R的取值应该控制在什么范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点A20)的两条直线分别交轴于BC,其中点B在原点上方,点C在原点下方,已知AB=.

1)求点B的坐标;

2)若△ABC的面积为4,求的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DM垂直平分AC,交BC于点D,连接AD,若C=28°,AB=BD,则B的度数为_____度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是(  )

A. 3分钟 B. 4分钟 C. 5分钟 D. 6分钟

查看答案和解析>>

同步练习册答案