精英家教网 > 初中数学 > 题目详情

【题目】下面给出的正多边形的边长都是20cm,请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.
(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;
(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;
(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.

【答案】
(1)解:如图1,沿黑线剪开,把剪下的四个小正方形拼成一个正方形,再沿虚线折叠即可


(2)解:如图2,沿黑线剪开,把剪下的三部分拼成一个正三角形,再沿虚线折叠即可;


(3)解:如图3,沿黑线剪开,把剪下的五部分拼成一个正五边形,再沿虚线折叠即可.


【解析】(1)在正方形四个角上分别剪下一个边长为5的小正方形,拼成一个正方形作为直四棱柱的底面即可;(2)在正三角形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正三角形,作为直三棱柱的一个底面即可;(3)在正五边形的每一角上找出到顶点距离是5的点,然后作边的垂线,剪下后拼成一个正五边形,作为直五棱柱的一个底面即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.

时段

x

还车数
(辆)

借车数
(辆)

存量y
(辆)

6:00﹣7:00

1

45

5

100

7:00﹣8:00

2

43

11

n

根据所给图表信息,解决下列问题:
(1)m= , 解释m的实际意义:
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).
(1)若以C、E、F为顶点的三角形与以A、B、C为顶点的三角形相似. ①当AC=BC=2时,AD的长为
②当AC=3,BC=4时,AD的长为
(2)当点D是AB的中点时,△CEF与△CBA相似吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于(
A.3:4
B. :2
C. :2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:
请根据图中提供的信息,解答下面的问题:
(1)此次共调查了名学生,扇形统计图中“艺术鉴赏”部分的圆心角是度;
(2)请把这个条形统计图补充完整;
(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1x2 . 求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段d是线段abc的第四比例项,其中a=2cm,b=4cm,c=5cm,则d等于(  ).
A.1cm
B.10cm
C.2.5cm
D.1.6cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ECD上一点,连接AEBD , 且AEBD交于点FDEEC=2:3,则SDEFSABF=(  )
A.2:3
B.4:9
C.2:5
D.4:25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;

(3)登山多长时间时,甲、乙两人距地面的高度差为70米?

查看答案和解析>>

同步练习册答案