【题目】(1)问题情境,如图1,△ABC的边BC在直线m上,AC⊥BC,且AC=BC,△EFP的边FP也在直线m上,边EF与边AC重合,且EF=FP,
在图1中,AB与AP的数量关系是_______,AB与AP的位置关系是_______
(2)操作发现:将△EFP沿直线m向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ,猜想并证明BQ与AP的数量关系和位置关系
(3)猜想论证:将△EFP沿直线m向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ,(2)中的结论还成立吗?为什么?
【答案】(1)相等,垂直(2)相等,垂直,证明略(3)成立,证明略
【解析】
(1)先说明△ABC与△EFP是全等的等腰直角三角形,然后根据等腰直角三角的性质可得 ∠BAC=∠CAP=45°,则AB=AP;又∠BAP=90°,则AP⊥AB;
(2)延长BQ交AP于H点,说明△QPC为等腰直角三角形,则有QC=PC;然后判定△ACP≌△BCQ,则AP=BQ,∠BQC=∠APC,;最后根据直角三角形的性质说明∠PNB=90°即可;
(3)方法同(2)可证BQ与AP所满足的数量关系为相等,位置关系为垂直.
解:如图1:由题意得:AC⊥BC、AC=BC、EF=AC、EF=FP,
∴△ABC与△EFP是全等的等腰直角三角形
∴∠BAC=∠CAP=45°
∴AB=AP
又∵∠BAP=∠BAC+∠CAP= 90°
∴AP⊥AB
故答案为AB=AP,AP⊥AB;
(2)证明:如图:延长BQ交AP于H点,
∵∠EPF=45
∴∠CPQ=45°
∵AC⊥BC.
∴∠COP=∠CPQ.
∴CQ=CP,即△QPC为等腰直角三角形
在Rt△BCQ和Rt△ACP中
BC=AC、∠BCQ=∠ACP, CQ=CP,
∴Rt△BCQ≌Rt△ACP(SAS)
∴BQ=AP,∠BQC=∠APC,
在Rt△BCQ中,∠BQC+∠PBN=90°
∴∠APC+∠PBN=90°
∴∠PNB=90°
∴QB⊥AP
(3)成立,理由如下:
如图3:∵∠EPF=45
∴∠CPQ=45°
∵AC⊥BC.
∴∠COP=∠CPQ.
∴CQ=CP,即△QPC为等腰直角三角形
在Rt△BCQ和Rt△ACP中
BC=AC、∠BCQ=∠ACP, CQ=CP,
∴Rt△BCQ≌Rt△ACP(SAS)
∴BQ=AP,∠BQC=∠APC,
在Rt△BCQ中,∠BQC+∠CBQ=90°
∵∠PBH=∠CBQ
∴∠APC+∠PBH=90°
∴∠PHB=180°-(∠APC+∠PBH)=90°
∴QB⊥AP
科目:初中数学 来源: 题型:
【题目】如图,点O为原点,A. B为数轴上两点,AB=15,且OA:OB=2.
(1)A、B对应的数分别为___、___;
(2)点A. B分别以4个单位/秒和3个单位/秒的速度相向而行,则几秒后A. B相距1个单位长度?
(3)点A. B以(2)中的速度同时向右运动,点P从原点O以7个单位/秒的速度向右运动,是否存在常数m,使得4AP+3OBmOP为定值,若存在请求出m值以及这个定值;若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是( )海里.
A.50B.25C.25D.25
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面文字:
对于(﹣5)+(﹣9)+17 +(﹣3)
可以如下计算:
原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]
=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)
=﹣1
上面这种方法叫拆项法,你看懂了吗?
仿照上面的方法,请你计算:(﹣1)+(﹣2000)+4000+(﹣1999)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.
(1)求证:四边形BECF是平行四边形;
(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形中,点E是边AB的中点,延长DE交CB的延长线于点F.
(1)求证:;
(2)若,连接EC,则的度数是__________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.
(1)求反比例函数y=的表达式;
(2)求点B的坐标;
(3)求△OAP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在菱形ABCD中,AB=4,∠BAD=120,△ABF为等边三角形;点E.F分别在菱形的边BC.CD上滑动,且点E.F不与点B.C.D重合,当点E.F分别在BC.CD上滑动时,求四边形ABCF的面积= ___________并求△CEF面积的最大值___________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com