精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,正△ABC的顶点B(﹣3,0)、C(﹣1,0),过坐标原点O的一条直线分别与边AB、AC交于点M、N.若OM=2ON,则点N的坐标为_____

【答案】

【解析】

AHBCHMKBCAC于点K.由△MKN≌△OCNAAS),推出MKOC=1,KNNC,证明MK是△ABC的中位线即可解决问题;

解:如图,作AH⊥BC于H,MK∥BC交AC于点K.

∵B(﹣3,0)、C(﹣1,0),

∴BC=2,

∵△ABC是等边三角形,

∴AB=AC=BC=2,

∵AH⊥BC,

∴BH=CH=1,

∴AH=

∴A(﹣2,),

∵OM=2ON,

∴MN=ON,

∵MK∥OB,

∴∠MKN=∠CON,

∵∠MNK=∠CNO,

∴△MKN≌△OCN(AAS),

∴MK=OC=1,KN=NC,

∵MK=BC,MK∥BC,

∴MK是△ABC的中位线,

∴AK=CK,

∴K

∵KN=CN,

∴N

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】12分)如图,ABC内接于O,AB=AC,BD为O的弦,且ABCD,过点A作O的切线AE与DC的延长线交于点E,AD与BC交于点F.

(1)求证:四边形ABCE是平行四边形;

(2)若AE=6,CD=5,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BC是⊙O的直径,点AD在⊙O上,∠B=2CAD,在BC的延长线上有一点P,使得∠PACB,弦AD交直径BC于点E

(1)求证:DP与⊙O相切;

(2)判断DCE的形状,并证明你的结论;

(3)若CE=2,DE,求线段BC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2x+2与x轴交于点AB两点,交y轴于C点,抛物线的对称轴与x轴交于H点,分别以OCOA为边作矩形AECO

(1)求直线AC的解析式;

(2)如图2,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP面积最大时,求|PMOM|的最大值.

(3)如图3,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'CD'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△AED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数mn,定义一种运算“※”为:mnmn+n

(1)求2※5与2※(﹣5)的值;

(2)如果关于x的方程x※(ax)=﹣有两个相等的实数根,求实数a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为圆内接四边形,A为弧BD中点,连接对角线AC,E在AC上,且AE=AB求证:

(1)∠CBE=∠CAD;

(2)AC2=BCCD+AB2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度(精确到0.1米)

(参考数据:sin10°≈0.17 cos10°≈0.98 tan10°≈0.18 ≈1.41 ≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据(单位:个)

1号

2号

3号

4号

5号

总数

甲班

89

100

96

118

97

500

乙班

100

96

110

90

104

500

统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?

查看答案和解析>>

同步练习册答案