【题目】如图所示,已知中,,,,、是的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为.
(1)则____________;
(2)当为何值时,点在边的垂直平分线上?此时_________?
(3)当点在边上运动时,直接写出使成为等腰三角形的运动时间.
【答案】(1)12;(2)t=12.5s时,13 cm;(3)11s或12s或13.2s
【解析】
(1)由勾股定理即可得出结论;
(2)由线段垂直平分线的性质得到PC= PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=2t-BC计算即可;
(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.
(1)在Rt△ABC中,BC(cm).
故答案为:12;
(2)如图,点P在边AC的垂直平分线上时,连接PC,
∴PC= PA=t,PB=16-t.
在Rt△BPC中,,即,
解得:t=.
∵Q从B到C所需的时间为12÷2=6(s),>6,
∴此时,点Q在边AC上,CQ=(cm);
(3)分三种情况讨论:
①当CQ=BQ时,如图1所示,
则∠C=∠CBQ.
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=10,
∴BC+CQ=22,
∴t=22÷2=11(s).
②当CQ=BC时,如图2所示,
则BC+CQ=24,
∴t=24÷2=12(s).
③当BC=BQ时,如图3所示,
过B点作BE⊥AC于点E,
则BE,
∴CE=7.2.
∵BC=BQ,BE⊥CQ,
∴CQ=2CE=14.4,
∴BC+CQ=26.4,
∴t=26.4÷2=13.2(s).
综上所述:当t为11s或12s或13.2s时,△BCQ为等腰三角形.
科目:初中数学 来源: 题型:
【题目】灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
请根据图中提供的信息,回答下列问题:
(1)a= %,并补全条形图.
(2)在本次抽样调查中,众数和中位数分别是多少?
(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为响应人民政府“形象重于生命”的号召,规划部门在甲建筑物的顶部点测得条幅顶端的仰角为,测得条幅底端的俯角为,已知条幅长,则底部不能直接到达的甲、乙两建筑物之间的水平距离的长为________.(答案可带根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
(1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
求证:①PN=PF;②DF+DN=DP;
(2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )
A. 6.06×104立方米/时 B. 3.136×106立方米/时
C. 3.636×106立方米/时 D. 36.36×105立方米/时
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.
(1)求证:△ADF≌△DCE;
(2)求GH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,是角平分线,.
(1)如图1,是高,,,则 (直接写出结论,不需写解题过程);
(2)如图2,点在上,于,试探究与、之间的数量关系,写出你的探究结论并证明;
(3)如图3,点在的延长线上,于,则与、之间的数量关系是 (直接写出结论,不需证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com