精英家教网 > 初中数学 > 题目详情

【题目】如图,为响应人民政府“形象重于生命”的号召,规划部门在甲建筑物的顶部点测得条幅顶端的仰角为,测得条幅底端的俯角为,已知条幅长,则底部不能直接到达的甲、乙两建筑物之间的水平距离的长为________.(答案可带根号)

【答案】

【解析】

在图中两个直角三角形中,利用30°、45°角的正切值进行求解,得到关于DF的方程,解答即可.

DFAB于点F,则∠ADF=45°,EDF=30°.

DF=x,RtADF中,∵∠ADF=45°,A=45°,

AF=DF=x,

RtFDE中,∵tanEDF=

EF=DFtan30°=x,

AE=AF+EF=x+x,

x+x=30,

解得x=45-15

BC=DF=(45-15)m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.

(1)求证:∠A2E,以下是小明的证明过程,请在括号里填写理由.

证明:∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知)

∴∠ACD=∠ABC+A,∠2=∠1+E(_________)

∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质)

CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知)

∴∠ACD22,∠ABC21(_______)

∴∠A2221(_________)

2(2﹣∠1)(_________)

2E(等量代换)

(2)如果∠A=∠ABC,求证:CEAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AD为O的直径,BC为O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.

(1)求证:△ABM∽△MCD;

(2)若AD=8,AB=5,求ME的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长为3cm动点P从点A出发,以每秒1cm的速度,沿ABC的方向运动,到达点C时停止,设运动时间为x(s),yPC2y关于x的函数的图像大致为 ( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BCD都在⊙O上,过点CACBDOB延长线于点A,连接CD,且∠CDB=OBD=30°DB=cm

1)求证:AC是⊙O的切线;

2求由弦CDBD与弧BC所围成的阴影部分的面积.(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明为了测量小山顶的塔高,他在处测得塔尖的仰角为,再沿方向前进到达山脚处,测得塔尖的仰角为,山坡的坡度,求塔高.(精确到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点C.CDx轴,垂足为D,若OB=2OA=3OD=12.

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求CDE的面积;

(3)直接写出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知中,的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为

1)则____________

2)当为何值时,点在边的垂直平分线上?此时_________?

3)当点在边上运动时,直接写出使成为等腰三角形的运动时间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=ACBAC=),将线段BC绕点B逆时针旋转60°得到线段BD

1)如图1,直接写出ABD的大小(用含的式子表示);

2)如图2BCE=150°ABE=60°,判断ABE的形状并加以证明;

3)在(2)的条件下,连结DE,若DEC=45°,求的值。

查看答案和解析>>

同步练习册答案