精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点C.CDx轴,垂足为D,若OB=2OA=3OD=12.

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求CDE的面积;

(3)直接写出不等式kx+b≤的解集.

【答案】(1)y=﹣2x+12;y=﹣;(2)140;(3)x≥10,或﹣4≤x<0;

【解析】

(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.

(2)联立方程组求解出交点坐标即可.

(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.

(1)由已知,OA=6,OB=12,OD=4,

∵CD⊥x轴,

∴OB∥CD,

∴△ABO∽△ACD,

∴CD=20,

∴点C坐标为(﹣4,20),

n=xy=﹣80.

∴反比例函数解析式为:y=﹣,

把点A(6,0),B(0,12)代入y=kx+b得:,

解得:.

∴一次函数解析式为:y=﹣2x+12,

(2)当﹣=﹣2x+12时,解得,

x1=10,x2=﹣4,

x=10时,y=﹣8,

∴点E坐标为(10,﹣8),

∴S△CDE=S△CDA+S△EDA=.

(3)不等式kx+b,从函数图象上看,表示一次函数图象不低于反比例函数图象,

∴由图象得,x≥10,或﹣4≤x<0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是(  )

A. (,0)B. (,0)C. (,0)D. (,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+mx+nx轴交于AB两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A10),C02).

1)求抛物线的表达式;

2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;

3)点E时线段BC上的一个动点,过点Ex轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为响应人民政府“形象重于生命”的号召,规划部门在甲建筑物的顶部点测得条幅顶端的仰角为,测得条幅底端的俯角为,已知条幅长,则底部不能直接到达的甲、乙两建筑物之间的水平距离的长为________.(答案可带根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC5BC8,点D是边BC上(不与BC重合)一动点,∠ADE=∠BaDEAC于点E,下列结论:①AD2AEAB;②1.8≤AE5;⑤当AD时,△ABD≌△DCE;④△DCE为直角三角形,BD46.25.其中正确的结论是_____.(把你认为正确结论序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD中,DE平分∠ADCBC边于点E,PDE上的一点(PEPD),PMPD,PMAD边于点M.

(1)若点F是边CD上一点,满足PFPN,且点N位于AD边上,如图1所示.

求证:①PN=PF;DF+DN=DP;

(2)如图2所示,当点FCD边的延长线上时,仍然满足PFPN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为6,点EF分别在BCDC上,CE=DF=2DEAF相交于点G,点HAE的中点,连接GH

1)求证:△ADF≌△DCE

2)求GH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少销售10个。为了赚得8000元的利润,售价应定为多少?这时应进货多少个

查看答案和解析>>

同步练习册答案