精英家教网 > 初中数学 > 题目详情

【题目】随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)

【答案】224

【解析】

过点CCDAB于点D,利用锐角三角函数的定义求出CDAD的长,进而可得出结论.

过点CCDAB于点D,

RtADCRtBCD中,

∵∠CAB=30°,CBA=45°,AC=640,

1088﹣864=224(公里),

答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数的图象经过P-2·3).

(1)求此反比例函数的解析式;

(2)A(2-3)B(32)是否在这个函数的图象上?

(3)这个函数的图象位于哪些象限?函数值y随自变量x的减小如何变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BCD都在⊙O上,过点CACBDOB延长线于点A,连接CD,且∠CDB=OBD=30°DB=cm

1)求证:AC是⊙O的切线;

2求由弦CDBD与弧BC所围成的阴影部分的面积.(结果保留π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点C.CDx轴,垂足为D,若OB=2OA=3OD=12.

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求CDE的面积;

(3)直接写出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD和四边形ACED都是平行四边形,点RDE的中点,BR分别交ACCD于点PQ

1)求证:△ABP∽△DQR

2)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知中,的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为

1)则____________

2)当为何值时,点在边的垂直平分线上?此时_________?

3)当点在边上运动时,直接写出使成为等腰三角形的运动时间

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线AC等于,∠D=120°,则菱形ABCD的面积为(

A.B.54C.36D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在棋盘中建立如图①所示的平面直角坐标系,二颗棋子的位置如图,它们的坐标分别为.

(1)如图②,添加棋子,使为端点的四条首尾连接的线段围成的图形成为轴对称图形,请在图中画出该图形的对称轴;

(2)在其它格点位置添加一颗棋子,使为端点的首尾连接的四条线段构成一个轴对称图形,请直接写出点的坐标。(写山2个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于给定的二次函数y=a(x﹣h)2+k(a0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.

(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____

(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;

(3)如图,二次函数y=m(x﹣1)2﹣4m(m0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为12,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点Px轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为n的值.

查看答案和解析>>

同步练习册答案