A. | ①③ | B. | ①② | C. | ①②③ | D. | ①②③④ |
分析 先求出BE=CF,根据平行线的性质得出∠AEF=∠DFC,再根据全等三角形的判定定理推出即可.
解答 解:∵BF=CE,
∴BE=CF.
在△ABE和△DCF中,$\left\{\begin{array}{l}{AB=DC}&{\;}\\{AE=DF}&{\;}\\{BE=CF}&{\;}\end{array}\right.$,
∴△ABE≌△DCF(SSS);
∵AE∥DF,
∴∠AEF=∠DFC.
在△ABE和△DCF中,$\left\{\begin{array}{l}{AE=DF}&{\;}\\{∠AEB=∠DFC}&{\;}\\{BE=CF}&{\;}\end{array}\right.$,
∴△ABE≌△DCF(SAS),
即选项A正确;
∵选项C、D(条件有的多余),
∴选项C、D错误;
根据选项B不能推出两三角形全等,
故选A.
点评 本题考查了平行线的性质,全等三角形的判定的应用,能正确运用全等三角形的判定定理进行推理是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com