【题目】已知∠AED=∠C,∠1+∠2=180°.请说明∠BEC=∠FGC
解:因为∠AED=∠C(已知),
所以________∥_______(_________________________________ )
得∠1=∠3( _______________________________ )
又∠1+∠2=180°(已知),
得∠3+∠2=180°(___________________________)
所以_______∥_______
所以∠BEC=∠FGC(___________________________)
科目:初中数学 来源: 题型:
【题目】下表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,文艺小组每次活动时间比科技小组每次活动时间多0.5小时.设文艺小组每次活动时间为小时,请根据表中信息完成下列解答.
课外小组活动 总时间(小时) | 文艺小组 活动次数 | 科技小组 活动次数 | |
七年级 | 12.5 | 4 | 3 |
八年级 | 10.5 | 3 | |
九年级 | 7 |
(1)科技小组每次活动时间为______小时(用含的式子表示);
(2)求八年级科技小组活动次数的值;
(3)直接写出______,
______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答.
(1)表中第8行的最后一个数是_____,它是自然数_____的平方,第8行共有 _____个数;
(2)用含n的代数式表示:第n行的第一个数是_____,最后一个数是_____,第n行共有_____个数;
(3)求第n行各数之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
成绩(m) | 2.3 | 2.4 | 2.5 | 2.4 | 2.4 |
则下列关于这组数据的说法,正确的是( )
A.众数是2.3B.平均数是2.4
C.中位数是2.5D.方差是0.01
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB∥CD,点E在直线AB上,点G在直线CD上,点P在直线AB.CD之间,∠AEP=40°,∠EPG=900
(1)填空:∠PGC=_________0;
(2)如图, 点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q,当点F在点E的右侧时,如果∠EFG=30°,求∠FQG的度数;
解:过点Q作QM∥CD
因为∠PGC+∠PGD=1800
由(1)得∠PGC=_______0,
所以∠PGD=1800-∠PGC=________0,
因为GQ平分∠PGD,
所以∠PGQ=∠QGD=∠PGD=_________0
(下面请补充完整求∠FQG度数的解题过程)
(3)点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q.如果∠FQG=2∠BFG,请直接写出∠EFG的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一张矩形纸ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.
(1)求证:是等腰三角形;
(2)如图2,过点D作,交BC于点G,连接FG交BD于点O.
①试判断四边形BGDF的形状,并说明理由;
②若,
,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题再现:
数形结合是一种重要的数学思想方法,借助这种思想方法可将抽象的数学知识变得直观并且具有可操作性.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.
例如:利用图形的几何意义验证完全平方公式.
将一个边长为的正方形的边长增加
,形成两个长方形和两个正方形,如图所示:这个图形的面积可以表示成:
或
∴
这就验证了两数和的完全平方公式.
类比解决:
请你类比上述方法,利用图形的几何意义验证平方差公式.
(要求画出图形并写出推理过程)
问题提出:如何利用图形几何意义的方法证明?
如图所示,表示1个1×1的正方形,即:
,
表示1个2×2的正方形,
与
恰好可以拼成1个2×2的正方形,因此:
、
、
就可以表示2个2×2的正方形,即:
而
、
、
、
恰好可以拼成一个
的大正方形.
由此可得:.
尝试解决:
请你类比上述推导过程,利用图形的几何意义确定:_______.(要求写出结论并构造图形写出推证过程).
问题拓广:
请用上面的表示几何图形面积的方法探究:_______.(直接写出结论即可,不必写出解题过程).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com