分析 (1)首先连接OD、DA、DB,由DC2=CB•CA,易证得△DCB∽△ACD,又由AB是⊙O的直径,继而可求得∠BDC+∠ODB=90°,则可证得结论;
(2)由tanA=$\frac{\sqrt{7}}{3}$,AE=6,可求得CE的长,继而求得AC的长,然后由OD∥AE,可得$\frac{OD}{AE}$=$\frac{OC}{AC}$,则可求得答案.
解答 证明:(1)连接OD、DA、DB,
∵DC2=CB•CA,
∴$\frac{DC}{CA}$=$\frac{CB}{CD}$,
又∵∠DCB=∠ACD,
∴△DCB∽△ACD,
∴∠BDC=∠DAC,
∵OA=OD,
∴∠OAD=∠ODA,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠BDC+∠ODB=90°,
即OD⊥DC,
∴CD是⊙O的切线;
(2)在Rt△ACE中,tanA=$\frac{CE}{AE}$=$\frac{CE}{6}$=$\frac{\sqrt{7}}{3}$,
∴CE=2$\sqrt{7}$,
在Rt△ACE中,AC=$\sqrt{{6}^{2}+(2\sqrt{7})^{2}}$=8,
∵OD∥AE,
∴$\frac{OD}{AE}$=$\frac{OC}{AC}$,
∴$\frac{r}{6}$=$\frac{8-r}{8}$,
解得:r=$\frac{24}{7}$,
∴⊙O的直径为$\frac{48}{7}$.
点评 此题考查了相似三角形的判定与性质、切线的判定、勾股定理以及三角函数等知识.注意准确作出辅助线是解此题的关键.
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com