精英家教网 > 初中数学 > 题目详情
如图,二次函数的图象与轴交于B、C两点(点B在点C的左侧),一次函数的图象经过点B和二次函数图象上另一点A. 点A的坐标(4 ,3),.

(1)求二次函数和一次函数解析式;
(2)若点P在第四象限内,求面积S的最大值并求出此时点P的坐标;
(3)若点M在直线AB上,且与点A的距离是到轴距离的倍,求点M的坐标.
(1) (2),  (3)

试题分析:(1)由条件得:B(-2,0)     
抛物线:经过A(4,3)、B(-2,0) 直线:经过A(4,3)、B(-2,0)
                          
                ∴  
(2)过P作轴,交AB于.
,则

       

∴当时,
,       
(3)设,A(4,3)
∴点M到x轴的距离=
∴由条件得:


          
点评:本题考查二次函数、一次函数,要求考生掌握用待定系数法求函数的解析式,掌握二次函数的性质,会用配方法求其最值
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知二次函数 (a、m为常数,且a¹0)。
(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;
(2)设该函数的图像的顶点为C,与x轴交于A、B两点,与y轴交于点D。
①当△ABC的面积等于1时,求a的值:
②当△ABC的面积与△ABD的面积相等时,求m的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为50米的篱笆围成。已知墙长为26米(如图所示),设这个苗圃园平行于墙的一边的长为米。(1)若垂直于墙的一边长为米,直接写出的函数关系式及其自变量的取值范围;(2)当为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于300平方米时,试结合函数图象,求出的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点, A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H.若PB=5t,且0<t<1.

(1)填空:点C的坐标是     ,b=   ,c=    
(2)求线段QH的长(用含t的式子表示);
(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

关于二次函数y=2x2+3,下列说法中正确的是                ( )
A.它的开口方向是向下B.当x<-1时,y随x的增大而减小
C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.

(1)求该抛物线的解析式;                                 
(2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大;
(3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与直线AB交于点A(-1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.

(1)求抛物线的解析式;
(2)设点D的横坐标为m,则用m的代数式表示线段DC的长;
(3)在(2)的条件下,若△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;
(4)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

黄冈市某高新企业制定工龄工资标准时充分考虑员工对企业发展的贡献,同时提高员工的积极性、控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案。
Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;
Ⅱ.社会工龄=参加本企业工作时年龄-18,
企业工龄=现年年龄-参加本企业工作时年龄。
Ⅲ.当年工作时间计入当年工龄
Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.
请解决以下问题

(1)求出y1、y2与工龄x之间的函数关系式;
(2)现年28岁的高级技工小张从18岁起一直在深圳实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?
(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数图象y=ax2+(a-3)x+1与x轴只有一个交点则a的值为     

查看答案和解析>>

同步练习册答案