精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.

(1)求直线AB的函数表达式。
(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值
(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值

【答案】
(1)

解:如图①,设直线AB与x轴的交点为M.

∵∠OPA=45°,

∴OM=OP=2,即M(﹣2,0).

设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得

,解得

故直线AB的解析式为y=x+2


(2)

解:如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,

根据条件可知△QDC为等腰直角三角形,则QD=QC.

设Q(m,m2),则C(m,m+2).

∴QC=m+2﹣m2=﹣(m﹣2+

QD=QC=[﹣(m﹣2+].

故当m=时,点Q到直线AB的距离最大,最大值为


(3)

解:∵∠APT=45°,

∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.

①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.

∵Q′(﹣2,4),F(0,4),

∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.

(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;

(ii)当∠PAT=90°时,得到:PT=2,此时t=0.

②如图③,

若∠PQB=45°,①中是情况之一,答案同上;

先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.

则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.

设Q″(n,n2)(﹣2<n<0),由FQ″=2,得

n2+(4﹣n20=22,即n4﹣7n2+12=0.

解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).

可证△PFQ″为等边三角形,

所以∠PFQ″=60°,又PQ″=PQ″,

所以∠PBQ″=∠PFQ″=30°.

则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.

(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.

则ET=AE=,OE=1,

所以OT=﹣1,

解得t=1﹣

(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.

设TG=a,则PG=TG=a,AG=TG=a,AP=

a+a=

解得PT=a=﹣1,

∴OT=OP﹣PT=3﹣

∴t=3﹣

综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣


【解析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;
(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;
(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为(  )

A.1或2
B.2或3
C.3或4
D.4或5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图

(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差。
(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.
(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a= , b=
(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.

(1)求∠DOA的度数。
(2)求证:直线EDO相切.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下.请根据图中信息,解答下列问题:

(1)a=%,b=%,“总是”对应阴影的圆心角为
(2)请你补全条形统计图
(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?
(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为(  )
A.2个
B.4个
C.5个
D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:
老师在课堂上放手让学生提问和表达, 
A.从不 B.很少 C.有时 D.常常 E.总是
答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.

根据以上信息,解答下列问题:
(1)该区共有 名初二年级的学生参加了本次问卷调查
(2)请把这幅条形统计图补充完整
(3)在扇形统计图中,“总是”所占的百分比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C

(1)求A、B、C的坐标;
(2)过抛物线上一点F作y轴的平行线,与直线AC交于点G.若FG= AC,求点F的坐标;
(3)E(0,﹣2),连接BE.将△OBE绕平面内的某点逆时针旋转90°得到△O′B′E′,O、B、E的对应点分别为O′、B′、E′.若点B′、E′两点恰好落在抛物线上,求点B′的坐标.

查看答案和解析>>

同步练习册答案