【题目】如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.
(1)求证:AC是⊙O的切线;
(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)
【答案】(1)证明见解析(2).
【解析】
(1)连接OD,根据CD与圆O相切,利用切线的性质得到OD垂直于CD,再由OC与BD平行,得到同位角相等与内错角相等,根据OB=OD,利用等边对等角得到一对角相等,等量代换得到夹角相等,再由OA=OD,OC=OC,利用SAS得到三角形AOC与三角形DOC全等,利用全等三角形对应角相等得到∠OAC=∠ODC=90°,即可得证;
(2)由OD=OB=DB得到三角形ODB为等边三角形,求出∠DOB=60°,根据图中阴影部分的面积=扇形DOB的面积-△DOB的面积解答即可.
(1)证明:连接OD,
∵CD与圆O相切,
∴OD⊥CD,
∴∠CDO=90°,
∵BD∥OC,
∴∠AOC=∠OBD,∠COD=∠ODB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠AOC=∠COD,
在△AOC和△DOC中,
,
∴△AOC≌△EOC(SAS),
∴∠CAO=∠CDO=90°,则AC与圆O相切;
(2)∵AB=OC=4,OB=OD,
∴Rt△ODC与Rt△OAC是含30°的直角三角形,
∴∠DOC=∠COA=60°,
∴∠DOB=60°,
∴△BOD为等边三角形,
图中阴影部分的面积=扇形DOB的面积-△DOB的面积= .
科目:初中数学 来源: 题型:
【题目】已知:如图,O为坐标原点,四边形OABC为矩形,A(20,0),C(0,8),点D是OA的中点,点P在边BC上运动,当△ODP是腰长为10的等腰三角形时,则P点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示:
用电量(千瓦时) | 120 | 140 | 160 | 180 | 200 |
户数 | 2 | 3 | 6 | 7 | 2 |
则这20户家庭该月用电量的众数和中位数、平均数分别是( )
A. 180,160,164B. 160,180;164
C. 160,160,164D. 180,180,164
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,平均每天可盈利y元.
写出y与x的函数关系式;
当该专卖店每件童装降价多少元时,平均每天盈利400元?
该专卖店要想平均每天盈利600元,可能吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣2(m+1)x+m2=0
(1)当m取何值时,方程有两个相等的实数根;
(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上,若BC=8cm,AD=6cm,且PN=2PQ,则矩形PQMN的周长为( )
A. 14.4cmB. 7.2cmC. 11.52cmD. 12.4cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在建立了平面直角坐标系的正方形网格中,A(2,2),B(1,0),C(3,1)
(1)画出△ABC关于x轴对称的△A1B1C1.
(2)画出将△ABC绕点B逆时针旋转90°,所得的△A2B2C2.并直接写出A2点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】函数y=x的图象与函数y=的图象在第一象限内交于点A、B(2,m)两点.
(1)请求出函数y=的解析式;
(2)请根据图象判断当一次函数的值大于反比例函数的值时x的取值范围;
(3)点C是函数y=在第一象限图象上的一个动点,当OBC的面积为3时,请求出点C的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com