精英家教网 > 初中数学 > 题目详情

【题目】已知平面直角坐标系中,直线与抛物线相交于两点(点在点的左侧),与抛物线的对称轴相交于点,记抛物线的顶点为,过点轴,垂足为

1)若轴,,求的值;

2)当,抛物线轴交于时,设射线与直线相交于点,求的值;

3)延长相交于点,求证:四边形是平行四边形.

【答案】1;(2;(3)见解析

【解析】

1)先根据轴求出直线的函数解析式,再利用抛物线的轴对称性,求得AB两点坐标,代入计算即可;

2)先求出直线与抛物线的函数解析式,进而求得交点AB以及顶点D的坐标,从而求得BD的函数解析式,然后求出点PC的坐标,便可计算得到结论;

3)设点坐标为点坐标为,得到所在直线解析式,求得F的坐标,再利用根与系数的关系得到,进而得证

解:(1轴,,即直线解析式为

且抛物线对称轴为

坐标为,点坐标为

代入求解得

2)解:当时,直线解析式为;抛物线轴交于时,,即抛物线解析式为

直线与抛物线交点坐标为

又抛物线顶点

设直线解析式为,将代入

解出直线解析式

于是把代入中,可求得点坐标为

于是把x=1代入中,可求得点坐标为

结合

可得的值为

3)解:设点坐标为点坐标为所在直线解析式为:

将点代入解析式中得

,可得点坐标为

为直线与抛物线的交点,

是方程的两根,

四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆OADAC分别交于点EF,且∠ACB=∠DCE

1)判断直线CE⊙O的位置关系,并证明你的结论;

2)若tan∠ACB=BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点BC,正方形AOCD的顶点D在第二象限内,EBC中点,OFDE于点F,连结OE,动点PAO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

1)求点B的坐标和OE的长;

2)设点Q2为(mn),当tanEOF时,求点Q2的坐标;

3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.

①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3QsAPt,求s关于t的函数表达式.

②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车早晨700出发,从甲地驶往乙地送货.如图是货车行驶路程ykm)与行驶时间xh)的完整的函数图像(其中点BCD在同一条直线上),小明研究图像得到了以下结论:

①甲乙两地之间的路程是100 km

②前半个小时,货车的平均速度是40 km/h

800,货车已行驶的路程是60 km

④最后40 km货车行驶的平均速度是100 km/h

⑤货车到达乙地的时间是824

其中,正确的结论是(

A.①②③④B.①③⑤C.①③④D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,ABBD,∠BAD18°,CBD上,BC0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31cos18°≈0.95tan18°≈0.325

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】连接正方形四边的中点所构成的正方形,我们称其原正方形的中点正方形,如图,已知正方形的中点正方形,再作正方形的中点正方形,这样不断下去,第n次所做的中点正方形,若正方形的边长为1,若设中点正方形的面积为,则___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】刘徵是我国古代最杰出的数学家之一,他在《九算术圆田术)中用“割圆术”证明了圆面积的精确公式,并给出了计算圆周率的科学方法(注:圆周率=圆的周长与该圆直径的比值)“割圆术”就是以“圆内接正多边形的面积”,来无限逼近“圆面积”,刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣.刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R.此时圆内接正六边形的周长为6R,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为_____.(参考数据:sinl5°=0.26)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A是函数yx0)上一动点,连接OA,线段OBOA关于y轴对称,将线段OA绕点O逆时针旋转90°得线段OC,将线段OA绕点A逆时针旋转90°得线段DA

1)在图1中画出线段OBOC,保留作图痕迹;

2)连接ABBCAC,当△AOB的面积等于△BOC的面积时,求△ABC的面积;

3)如图3,若点D的坐标为(mn),直接写出mn的等量关系式.

查看答案和解析>>

同步练习册答案