【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.
(1)求点B的坐标和OE的长;
(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;
(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.
①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.
②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.
【答案】(1)(8,0),;(2)(6,1);(3)①,②的长为或.
【解析】
(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,即可得到OE;
(2)如图,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由和,可得结论;
(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=,根据Q3(4,6),Q2(6,1),可得t=4时,s=,利用待定系数法可得s关于t的函数表达式;
②分三种情况:
(i)当PQ∥OE时,根据,表示BH的长,根据AB=12,列方程可得t的值;
(ii)当PQ∥OF时,根据tan∠HPQ=tan∠CDN=,列方程为2t2= (7t),可得t的值.
(iii)由图形可知PQ不可能与EF平行.
解:(1)令,则,
∴,
∴为.
∵为,
在中,.
又∵为中点,∴.
(2)如图,作于点,则,
∴,
∴,
∴,
∴.
∵,
∴,
由勾股定理得,
∴,
∴.
∵,
∴,
∴为.
(3)①∵动点同时作匀速直线运动,
∴关于成一次函数关系,设,
将和代入得,解得,
∴.
②(ⅰ)当时,(如图),,
作轴于点,则.
∵,
又∵,
∴,
∴,
∴,
∴.
(ⅱ)当时(如图),过点作于点,过点作于点,由得.
∵,
∴,
∴,
∴.
∵,
∴,
∴,
∴.
(ⅲ)由图形可知不可能与平行.
综上所述,当与的一边平行时,的长为或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=100°,在同一平面内,将△ABC绕点A顺时针旋转到△AB1C1的位置,连接BB1,若BB1∥AC1,则∠CAC1的度数是( )
A.10°B.20°C.30°D.40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD的三个顶点坐标是A(﹣9,0)、B(﹣3,0)、C(0,4).若某反比例函数的图象经过线段CD的中点,则其解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的对称轴是直线,与轴交于,两点,与轴交于点,点的坐标为,点为抛物线上的一个动点,过点作轴于点,交直线于点.
(1)求抛物线解析式;
(2)若点在第一象限内,当时,求四边形的面积;
(3)将绕平面直角坐标系中某点逆时针旋转,对应点为,,,当中有两个顶点落在抛物线上时,直接写出的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;
(2)求乙所拿的两袋垃圾不同类的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).
(1)求抛物线的函数表达式;
(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;
(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平面直角坐标系中,直线与抛物线相交于,两点(点在点的左侧),与抛物线的对称轴相交于点,记抛物线的顶点为,过点作轴,垂足为.
(1)若轴,,求的值;
(2)当,抛物线与轴交于时,设射线与直线相交于点,求的值;
(3)延长,相交于点,求证:四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图点分别是边长为4cm的等边三角形边动点,点从顶点沿向点运动,点同时从顶点沿向运动,它们的速度都是,当到达终点时停止运动,设运动时间为t秒,连接交于点M.
(1)求证:;
(2)点在运动的过程中,变化吗?若变化,请说明理由,若不变,则求出它的度数;
(3)当为何值时是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰中,,作的平分线交于点,将绕点旋转,使的两边交直线于点,交直线于点.
(1)当绕点旋转到如图①的位置时,请直接写出三条线段的数量关系;
(2)当绕点旋转到如图②的位置时,(1)中结论是否成立,若成立,请证明;若不成立,请写出正确的结论,并说明理由;
(3)若,当时,请直接写出线段的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com