精英家教网 > 初中数学 > 题目详情

【题目】如图点分别是边长为4cm的等边三角形动点,点从顶点沿向点运动,点同时从顶点沿运动,它们的速度都是,当到达终点时停止运动,设运动时间为t秒,连接交于点M

1)求证:

2)点在运动的过程中,变化吗?若变化,请说明理由,若不变,则求出它的度数;

3)当为何值时是直角三角形?

【答案】1)证明见解析;(2)不变,;(3)当t=秒或t=秒时三角形是直角三角形.

【解析】

1)利用等边三角形的性质可知ABAC,∠B=∠CAP60°,结合APBQ即可得证;
2)由△APC≌△BQA知∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ60°
3)可用t分别表示出BPBQ,分∠BPQ90°和∠BPQ90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值.

解:(1

因为是等边三角形,所以

因为

所以

2 不变

因为

所以

因为外角,

所以

3)由题意得:

时,因为

所以

时,

所以当秒或秒时三角形是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为4AC两点在⊙O上,点B⊙O内,AB⊥AC,若OB⊥OC,那么OB的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点BC,正方形AOCD的顶点D在第二象限内,EBC中点,OFDE于点F,连结OE,动点PAO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

1)求点B的坐标和OE的长;

2)设点Q2为(mn),当tanEOF时,求点Q2的坐标;

3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.

①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3QsAPt,求s关于t的函数表达式.

②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,ABBD,∠BAD18°,CBD上,BC0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31cos18°≈0.95tan18°≈0.325

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】连接正方形四边的中点所构成的正方形,我们称其原正方形的中点正方形,如图,已知正方形的中点正方形,再作正方形的中点正方形,这样不断下去,第n次所做的中点正方形,若正方形的边长为1,若设中点正方形的面积为,则___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC2,∠BAC45°,将△ABC绕点A按顺时针方向旋转角α得到△AEF,且α≤180°,连接BECF相交于点D.

(1)求证:BECF

(2)α90°时,求四边形AEDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】刘徵是我国古代最杰出的数学家之一,他在《九算术圆田术)中用“割圆术”证明了圆面积的精确公式,并给出了计算圆周率的科学方法(注:圆周率=圆的周长与该圆直径的比值)“割圆术”就是以“圆内接正多边形的面积”,来无限逼近“圆面积”,刘徽形容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣.刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R.此时圆内接正六边形的周长为6R,如果将圆内接正六边形的周长等同于圆的周长,可得圆周率为3.当正十二边形内接于圆时,如果按照上述方法计算,可得圆周率为_____.(参考数据:sinl5°=0.26)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:(A)和同学亲友聊天;(B)学习:(C)购物;(D)游戏;(E)其他),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):

选项

频数

频率

A

B

C

D

E

根据以上信息解答下列问题:

1)求本次参与调查的总人数.

2_________________________________,并补全条形统计图.

3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,以为直径的于点,交于点的切线;于点

1)求证:

2)填空:①若的面积为,则的面积为    

②当的度数为     时,四边形是菱形.

查看答案和解析>>

同步练习册答案