精英家教网 > 初中数学 > 题目详情

【题目】一辆货车早晨700出发,从甲地驶往乙地送货.如图是货车行驶路程ykm)与行驶时间xh)的完整的函数图像(其中点BCD在同一条直线上),小明研究图像得到了以下结论:

①甲乙两地之间的路程是100 km

②前半个小时,货车的平均速度是40 km/h

800,货车已行驶的路程是60 km

④最后40 km货车行驶的平均速度是100 km/h

⑤货车到达乙地的时间是824

其中,正确的结论是(

A.①②③④B.①③⑤C.①③④D.①③④⑤

【答案】D

【解析】

根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.

①甲乙两地之间的路程是100 km,①正确;

②前半个小时,货车的平均速度是:,②错误;

800,货车已行驶了一个小时,路程是60 km,③正确;

④最后40 km货车行驶的平均速度就是求BC段的速度,时间为1.3-10.3小时,路程为90-60=30km,平均速度是,④正确;

⑤货车走完段所用时间为:小时,即分钟

∴货车走完全程所花时间为:1小时24分钟,

∴货车到达乙地的时间是824,⑤正确;

综上:①③④⑤正确;

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边平行于坐标轴,对角线BD经过坐标原点,点C在反比例函数y=的图象上.若点A的坐标为(﹣2,﹣2),则k=(  )

A. 2 B. 4 C. 8 D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象过点

1)求此函数的解析式.

2)求出次函数图象与轴,轴的交点的坐标.

3)若直线相交于点轴围成的的面积为6,求出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰三角形的一边轴的正半轴上,点的坐标为 ,动点从原点出发,在线段上以每秒2个单位的速度向点匀速运动,动点从原点出发,沿轴的正半轴以每秒1个单位的速度向上匀速运动,过点轴的平行线分别交,设动点同时出发,当点到达点时,点也停止运动,他们运动的时间为

1)点的坐标为_____,的坐标为____

2)当为何值时,四边形为平行四边形;

3)是否存在某一时刻,使为直角三角形?若存在,请求出此时的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一幅三角板拼成如图所示的图形,过点CCF平分∠DCEDE于点F

1)求证:CF∥AB

2)求∠DFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD四条边上的中点分别为EFGH,顺次连接EFFGGHHE,得到四边形EFGH(即四边形ABCD的中点四边形).

1)四边形EFGH的形状是 ,证明你的结论.

2)当四边形ABCD的对角线满足 条件时,四边形EFGH是矩形;

3)结合问题(2),请做出图形并且证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OAOC分别与坐标轴重合,并且点B的坐标为.将该矩形沿OB折叠,使得点A落在点E处,OEBC的交点为D

1)求证:为等腰三角形;

2)求点E的坐标;

3)坐标平面内是否存在一点F,使得以点BEFO为顶点的四边形是平行四边形,若存在,请直接写出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是_____________.

查看答案和解析>>

同步练习册答案