精英家教网 > 初中数学 > 题目详情
17、如图,△ABC中,∠1=∠2,∠EDC=∠BAC,AE=AF,∠B=60°,则图中的线段AF、BF、AE、EC、AD、BD、DC、DF中与DE的长相等的线段有
3
条.
分析:连接FE交AD于O,得△AFE为等腰三角形.利用△ABC≌△EDC,求证△FBD为等边三角形.然后即可求解.
解答:解:连接FE交AD于O,

△AFE为等腰三角形.
∵∠1=∠2,
∴AO⊥EF,且FO=OE,得到DF=DE.
∵∠EDC=∠BAC,
∴△ABC≌△EDC,
∵∠ABC=60°,
∴∠DEC=60°,∠AED=120°,则∠AFD=120°,
∴△FBD为等边三角形.
∴BF=BD=DF=DE.
因此,与DE的长相等的线段有3条.
(请注意:当∠BAC=60°时,除了AD外的其他7条线段均与DE的长度相等)
故答案为:3.
点评:此题考查学生对相似三角形的判定与性质和等边三角形的判定与性质的理解和掌握,此题的关键是连接FE交AD于O,求证△ABC≌△EDC,然后利用等边三角形的性质得出答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案