精英家教网 > 初中数学 > 题目详情

【题目】阅读并回答问题.

求一元二次方程ax2+bx+c=0(a0)的根(用配方法).

解:ax2+bx+c=0,

a0,x2+x+=0,第一步

移项得:x2+x=﹣,第二步

两边同时加上(2,得x2+x+____2=﹣+2,第三步

整理得:(x+2=直接开方得x+=±,第四步

x=

x1=,x2=,第五步

上述解题过程是否有错误?若有,说明在第几步,指明产生错误的原因,写出正确的过程;若没有,请说明上述解题过程所用的方法.

【答案】有错误,在第四步.

【解析】

①检查原题中的解题过程是否有误:在第四步时,在开方时对b2-4ac的值是否是非负数没有进行讨论;②更正:分类讨论b2-4ac≥0b2-4ac<0时,原方程的根是什么.

有错误,在第四步.

错误的原因是在开方时对b2﹣4ac的值是否是非负数没有进行讨论.

正确步骤为:

①当b2﹣4ac0时,

x=

x1=x2=

②当b2﹣4ac0时,原方程无解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,点P是线段AD上任意一点,点QBC上一点,且AP=CQ.

(1)求证:BP=DQ;

(2)若AB=4,且当PD=5时四边形PBQD为菱形.求AD为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将函数y= (x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A′,B′,若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(m+1)x2+2mx+(m﹣3)=0有实数根.

(1)求m的取值范围;

(2)m为何值时,方程有两个相等的实数根?并求出这两个实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC,点E,F在边BC上,BE=CF,点DAF的延长线上,AD=AC.

(1)求证:ABE≌△ACF;

(2)若∠BAE=30°,则∠ADC=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCD,对角线ACBD相较于点O,要使ABCD为矩形,需添加下列的一个条件是  

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l1l2,分别交l1l2A. B两点,C在直线l2上且在点B的右侧,D在直线l1上且在点A左侧,P是直线l3上的动点,且不与A. B重合,设∠DAB=∠α.

(1)如图1,当点P在线段AB上时,求证:∠APC=∠α+PCB

(2)如图2,当点P在线段BA的延长线上时,请写出∠α、∠APC、∠PCB三个角之间的数量关系,并证明。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.

1

2

3

4

5

王同学

60

75

100

90

75

李同学

70

90

100

80

80

根据上表解答下列问题:

1)完成下表:

姓名

平均成绩(分)

中位数(分)

众数(分)

方差

王同学

80

75

75

_____

李同学

   

   

   

   

2)在这五次测试中,成绩比较稳定的同学是谁若将80分以上(含80分)的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?

3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.

(1)如图1,求证:AD=CE.

(2)如图2,设CEAD交于点F,连接BF.

①求证:∠CFA=60°.

②求证:CF+BF=AF.

查看答案和解析>>

同步练习册答案