精英家教网 > 初中数学 > 题目详情
15.计算:
(1)2tan60°-(3-π)0-|1-$\sqrt{3}$|+(-$\frac{1}{2}$)-1               
(2)(x+1)(x-1)-(x-2)2

分析 (1)根据零指数幂、特殊角的三角函数值、绝对值,负整数指数幂.可得实数的运算,然后根据实数的运算法则求得计算结果;
(2)根据去括号、合并同类项,可得答案.

解答 解:(1)原式=2×$\sqrt{3}$-1-($\sqrt{3}$-1)+(-2)=2$\sqrt{3}$-1-$\sqrt{3}$+1-2=$\sqrt{3}$-2;
(2)原式=x2-1-(x2-4x+4)=x2-1-x2+4x-4=4x-5.

点评 本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.为了求1+2+22+23+…+22010的值,可令S=1+2+22+23+…+22010,则2S=2+22+23+24+…+22011,因此2S-S=22011-1,所以1+2+22+23+…+22010=22011-1,仿照以上推理,计算1+3+32+33+…+3333的值可得$\frac{{3}^{334}-1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解方程:
(1)3x=2x+8
(2)2+$\frac{1}{2}$x=2x+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若一个圆锥的侧面展开图是半径为18cm,圆心角为210°的扇形,则这个圆锥的底面半径是$\frac{21}{2}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在Rt△ABC和Rt△BCD中,∠A=∠D=90°,AB=CD=4,BC=$4\sqrt{5}$,△BCE的面积=10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,△ACB为等腰三角形,∠ABC=90°,点P在线段BC上(不与B,C重合),以AP为腰长作等腰直角△PAQ,QE⊥AB于E.

(1)求证:△PAB≌△AQE;
(2)连接CQ交AB于M,若PC=2PB,求$\frac{PC}{MB}$的值;
(3)如图2,过Q作QF⊥AQ交AB的延长线于点F,过P点作DP⊥AP交AC于D,连接DF,当点P在线段BC上运动时(不与B,C重合),式子$\frac{QF-DP}{DF}$的值会变化吗?若不变,求出该值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.抛物线y=4(x-3)2+7的顶点坐标是(3,7).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解方程:
(1)x-3=4-$\frac{1}{2}x$
(2)$\frac{x+1}{2}-1=\frac{2-x}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知a+3b=7,2a+6b-8=6.

查看答案和解析>>

同步练习册答案