精英家教网 > 初中数学 > 题目详情

已知二次函数.

(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y<0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.

(1)图象见解析;(2)当y<0时,x<﹣3,或x>1;(3)此图象沿x轴向右平移3个单位,平移后图象所对应的函数关系式:y=﹣(x﹣2)2+2.

解析试题分析:(1)根据函数解析式确定图象顶点坐标及于x、y轴交点坐标即可画出图象,
(2)根据图象即可得出答案,
(3)根据图象平移“左加右减、上加下减”特点即可写出函数解析式.
试题解析:(1)二次函数的顶点坐标为:x==﹣1,y==2,
当x=0时,y=,
当y=0时,x=1或x=﹣3,
图象如图:

(2)据图可知:当y<0时,x<﹣3,或x>1;
(3)y=﹣x2﹣x+=﹣(x+1)2+2
根据二次函数图象移动特点,
∴此图象沿x轴向右平移3个单位,平移后图象所对应的函数关系式:y=﹣(x﹣2)2+2.
考点:二次函数的图象.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,已知直线y=-2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a≠0)经过点A、C.

(1)求抛物线的解析式;
(2)设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于△APC面积的4倍.求出点Q的坐标;
(3)点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F,使△MEF为等腰直角三角形? 若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,矩形OABC过原点O,且A(0,2)、C(6,0),∠AOC的平分线交AB于点D.
(1)直接写出点B的坐标;
(2)如图,点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿轴正方向移动.设移动时间为秒.

①当t为何值时,△OPQ的面积等于1;
②当t为何值时,△PQB为直角三角形;
(3)已知过O、P、Q三点的抛物线解析式为y=-(x-t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价x定为多少元时,才能使每天所赚的利润y 最大?并求出最大利润。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

动物园计划用长为120米的铁丝围成如图所示的兔笼,(不包括顶棚)供学习小组的同学参观,其中一面靠墙,(墙足够长)怎样设计围成的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知直线分别与y轴、x轴相交于A、B两点,与二次函数的图像交于A、C两点.

(1)当点C坐标为()时,求直线AB的解析式;
(2)在(1)中,如图,将△ABO沿y轴翻折180°,若点B的对应点D恰好落在二次函数的图像上,求点D到直线AB的距离;
(3)当-1≤x≤1时,二次函数有最小值-3,求实数m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数的图象与x轴交于点A(-1, 0),与y轴交于点C(0,-5),且经过点D(3,-8).
(1)求此二次函数的解析式和顶点坐标;
(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.

查看答案和解析>>

同步练习册答案