【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=AB·AD,我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则∠DAB=_________.
(2)如图3,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,BC=2,∠D=90°,求AD的长?
图1 图2 图3
【答案】(1)(2)证明见解析(3)
【解析】试题分析:(1)、根据“可分四边形”和“可分角”的定义得出答案;(2)、根据角平分线的性质得出∠DAC=∠CAB=30°,∠DCA=150°-∠ACB,然后根据角度之间的关系得出∠ADC=∠ACB,从而说明△ACD和△ABC相似,从而得出结论;(3)、根据“可分四边形”和“可分角”的性质得出∠DAC=∠CAB, ,从而说明△ACD和△ABC相似,根据相似得出∠ACB=∠D=90°,然后根据勾股定理求出AB的长度,结合得出AD的长度.
试题解析:(1)
(2)∵AC平分∠DAB,∠DAB=60° ∴∠DAC=∠CAB=30° ∵∠DCB=150°
∴∠DCA=150°-∠ACB
在△ADC中,∠ADC=180°- ∠DAC- ∠DCA =180°-30°-(150°-∠ACB)=∠ACB
∴△ACD∽△ABC ∴ ∴, 即证四边形ABCD为“可分四边形”
(3)∵四边形ABCD为“可分四边形”,∠DAB为“可分角”∴AC平分∠DAB,
即∠DAC=∠CAB, ∴△ACD∽△ABC ∴∠ACB=∠D=90°
在Rt△ACB中AB= ∵ ∴AD=
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,且BE=CF.求证:
(1)AD是△ABC的角平分线;
(2)AE=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有下列说法: ①有限小数一定是有理数;
②无限小数一定是无理数;
③无限不循环小数叫做无理数;
④任何一个有理数的绝对值一定是正数;
⑤倒数等于本身的数是±1.
其中正确说法的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算中,计算结果正确的是( )
A. 3a2·a3=3a6 B. (2a2)3·(-ab)=-8a7b
C. 5x4-x2=4x2 D. x2÷x2=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国倡导的“一带一路”建设将促进我国与世界各国的互利合作.根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)本次共调查人________,请在补全条形统计图并标出相应数据________;
(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列树状图或列表说明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com