【题目】如图,四边形为平行四边形,,,交的延长线于点,交于点.
(1)求证:;
(2)若,,,求的长;
【答案】(1)证明见解析(2)
【解析】
试题分析:(1)延长DC交BE于点M,证明四边形ABMC是平行四边形,然后利用平行线分线段成比例可得结论;(2)根据条件证明BE=2AC,然后在Rt△ADC中利用三角函数求出AC的长,然后可得BE的长.
试题解析:(1)延长DC交BE于点M,
BE∥AC,AB∥DC,
∴四边形ABMC是平行四边形,
CM=AB=DC,C为DM的中点,
∵BE∥AC,
∴DF=FE;
(2)由(1)得CF是△DME的中位线,故ME=2CF,
又∵AC=2CF,四边形ABMC是平行四边形,
∴BE=2BM=2ME=2AC,
又∵AC⊥DC,
∴在Rt△ADC中利用勾股定理得,,
∴.
科目:初中数学 来源: 题型:
【题目】如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的值可以是2.5。其中正确的结论有_________(写出所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=4cm,BC=6cm,现有一动点P从A出发以2cm/秒的速度,沿矩形的边A—B—C—D回到点A,设点P的运动时间为t秒。
(1)当t=3秒时,求△ABP的面积;
(2)当t为何值时,点P与点A的距离为5cm?
(3)当t为何值时(2<t<5),以线段AD、CP、AP的长度为三角形是直角三角形,且AP是斜边。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com