精英家教网 > 初中数学 > 题目详情

【题目】如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心,此时,点M是线段PQ的中点.如图,在直角坐标系中,ABO的顶点ABO的坐标分别为(10)、(01)、(00),点列P1P2P3中的相邻两点都关于ABO的一个顶点对称,点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,,且这些对称中心依次循环,已知P1的坐标是(11),点P2019的坐标为_____

【答案】(-1,3)

【解析】

先利用对称中心的定义分别确定P1P2P3P4P5P6P7的坐标,发现点P7的坐标和点P1的坐标相同,即这些点的坐标以6个为一组进行循环,由此可确定点P2019的坐标.

如图∵点P1的坐标是(11),A10),

而点P1与点P2关于点A对称,

∴点P2的坐标为(11),

同理得到点P3的坐标为(13),

P4的坐标为(13),

P5的坐标为(13),

P6的坐标为(11),

P7的坐标为(11),,

∴点P7的坐标和点P1的坐标相同,

2019336×63

∴点P2019的坐标和点P3的坐标相同,即为(13).

故答案是:(13.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,以AB为直径的⊙O分别与BCAC交于点DE,过点DDFAC,垂足为点F

1)求证:DF为⊙O的切线;

2)求证:FCE的中点;

3)若⊙O的半径为3,∠CDF22.5°,求阴影部分的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程Max2+bx+c0Ncx2+bx+a0ac),则下列结论:①如果5是方程M的一个根,那么是方程N的一个根;②如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;③如果方程M与方程N有一个相同的根,那么这个根必是x1.其中正确的结论是(  )

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx24x+3

1)用配方法将yx24x+3化成yaxh2+k的形式;

2)在平面直角坐标系中,画出这个二次函数的图象;

3)写出当x为何值时,y0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差yx称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”

(1)①点A(1,3) 的“坐标差”为

②抛物线y=x2+3x+3的“特征值”为

(2)某二次函数y=x2+bx+c(c≠0) 的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等。

①直接写出m= (用含c的式子表示)

②求此二次函数的表达式。

(3)如图,在平面直角坐标系xOy中,以M(2,3)为圆心,2为半径的圆与直线y=x相交于点DE请直接写出⊙M的“特征值”为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°∠A=30°,点DAB的中点,DE⊥BC,垂足为点E,连接CD

1)如图1DEBC的数量关系是   

2)如图2,若P是线段CB上一动点(点P不与点BC重合),连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DEBFBP三者之间的数量关系,并证明你的结论;

3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DEBFBP三者之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与双曲线相交于点,与轴交于点

1)求直线的解析式;

2)若点轴上,且,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,∠BAC120°,点DAB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB2,则△BDE面积的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的函数y=ax2+(2a+1)x+a-1与坐标轴有两个交点,则a的取值有(

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案