【题目】如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边中点,过D点作DE⊥DF,交AB于E,交BC于F.(1)求证:DE=DF.(2)若AE=8,FC=6,求EF长.
【答案】(1)见解析;(2)EF=10.
【解析】
(1)连接BD,根据等腰直角三角形的性质证明△BED≌△CFD就可以得出DE=DF;
(2)根据等腰直角三角形的性质和全等三角形的性质可得BE=CF ,AE=BF,然后利用勾股定理求EF的长即可.
解:(1)连接BD,
∵D是AC中点,
∴∠ABD=∠CBD=45°,BD=AD=CD,BD⊥AC,
∵∠EDB+∠FDB=90°,∠FDB+∠CDF=90°,
∴∠EDB=∠CDF,
在△BED和△CFD中,,
∴△BED≌△CFD(ASA),
∴DE=DF;
(2)∵△BED≌△CFD,
∴BE=CF=6,
∵AB=BC,
∴AE=BF=8,
在Rt△BEF中,EF=.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,长方形纸片ABCD的长AD=9cm,宽AB=3cm,将其折叠,使点D与点B重合.
求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在长方形中,BC=3,动点从出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点的运动时间为
(1)当P点在线段BC上且不与C点重合时,若直线PB’与直线CD相交于点M,且∠PAM=45°,试求:AB的长
(2)若AB=4
①如图2,当点B’落在AC上时,显然△PCB’是直角三角形,求此时t的值
②是否存在异于图2的时刻,使得△PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,.
⑴已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:;
⑵以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=4,E为BC中点,AE⊥BC于点E,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.
(1)求菱形ABCD的面积;(2)求∠CHA的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,OA=2,OB=4,以A点为顶点,AB为腰在第三象限作等腰直角△ABC.
(1)求C点的坐标.
(2)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰作等腰直角△APD,过D作DE⊥x轴于E点,求OP-DE的值.
(3)如图3,点F坐标为(-4,-4),点G(0,m)在y轴负半轴,点H(n,0)在x轴的正半轴,且FH⊥FG,求m+n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为线段OA表示货车离甲地的距离与xh的函数图象;折线BCDE表示汽车距离甲地的距离与的函数图象.
求线段OA与线段CD所表示的函数表达式;
若OA与CD相交于点F,求点F的坐标,并解释点F的实际意义;
当x为何值时,两车相距100千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,CD、CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).
(1)若α=70°,β=40°,求∠DCE的度数;
(2)试用α、β的代数式表示∠DCE的度数(直接写出结果);
(3)如图②,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∠DCE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com