精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰直角三角形ABC,ABC=90°DAC边中点,过D点作DEDF,交ABE,交BCF.1)求证:DE=DF.2)若AE=8FC=6,求EF.

【答案】1)见解析;(2EF10.

【解析】

1)连接BD,根据等腰直角三角形的性质证明BED≌△CFD就可以得出DE=DF

2)根据等腰直角三角形的性质和全等三角形的性质可得BECF AEBF,然后利用勾股定理求EF的长即可.

解:(1)连接BD

DAC中点,

∴∠ABD=∠CBD45°BDADCDBDAC

∵∠EDB+∠FDB90°,∠FDB+∠CDF90°

∴∠EDB=∠CDF

BEDCFD中,

∴△BED≌△CFDASA),

DE=DF

2)∵BED≌△CFD

BECF6

ABBC

AEBF8

RtBEF中,EF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD右侧△ADE,使AD=AE,∠DAE =∠BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;

(2)设

①如图2,当点在线段BC上移动,则之间有怎样的数量关系?请说明理由;

②当点在直线BC上移动,则之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,长方形纸片ABCD的长AD9cm,宽AB3cm,将其折叠,使点D与点B重合.

求:(1)折叠后DE的长;(2)以折痕EF为边的正方形面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在长方形中,BC=3,动点出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点的运动时间为

1)当P点在线段BC上且不与C点重合时,若直线PB’与直线CD相交于点M,且∠PAM=45°,试求:AB的长

2)若AB=4

①如图2,当点B’落在AC上时,显然PCB’是直角三角形,求此时t的值

②是否存在异于图2的时刻,使得PCB’是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.

⑴已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:

⑵以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4,EBC中点,AEBC于点E,AFCD于点F,CGAE,CGAF于点H,交AD于点G.

(1)求菱形ABCD的面积;(2)求∠CHA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,OA=2OB=4,以A点为顶点,AB为腰在第三象限作等腰直角ABC.

1)求C点的坐标.

2)如图2OA=2,Py轴负半轴上的一个动点,若以P为直角顶点,PA为腰作等腰直角APD,过DDEx轴于E点,求OPDE的值.

3)如图3,点F坐标为(-4,-4),点G0m)在y轴负半轴,点Hn0)在x轴的正半轴,且FHFG,求m+n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地相距480km,一辆货车从甲地匀速驶往乙地,货车出发一段时间后,一辆汽车从乙地匀速驶往甲地,设货车行驶的时间为线段OA表示货车离甲地的距离xh的函数图象;折线BCDE表示汽车距离甲地的距离的函数图象.

求线段OA与线段CD所表示的函数表达式;

OACD相交于点F,求点F的坐标,并解释点F的实际意义;

x为何值时,两车相距100千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,CDCE分别是△ABC的高和角平分线,∠BACα,∠Bβαβ).

1)若α70°,β40°,求∠DCE的度数;

2)试用αβ的代数式表示∠DCE的度数(直接写出结果);

3)如图,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E,且αβ30°,求∠DCE的度数.

查看答案和解析>>

同步练习册答案