18£®ÊÐijÖÐѧ¿ªÕ¹ÒÔ¡°Èý´´Ò»°ì¡±ÎªÖÐÐÄ£¬ÒÔ¡°Ð£Ô°ÎÄÃ÷¡±ÎªÖ÷ÌâµÄÊÖ³­±¨±ÈÈü£®Í¬Ñ§ÃÇ»ý¼«²ÎÓ룬²ÎÈüͬѧÿÈ˽»ÁËÒ»·ÝµÃÒâ×÷Æ·£¬ËùÓвÎÈü×÷Æ·¾ù»ñ½±£¬½±Ïî·ÖΪһµÈ½±¡¢¶þµÈ½±¡¢ÈýµÈ½±ºÍÓÅÐã½±£¬½«»ñ½±½á¹û»æÖƳÉÈçÏÂÁ½·ùͳ¼ÆÍ¼£®ÇëÄã¸ù¾ÝͼÖÐËù¸øÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©Ò»µÈ½±ËùÕ¼µÄ°Ù·Ö±ÈÊÇ10%£®
£¨2£©Ôڴ˴αÈÈüÖУ¬Ò»¹²ÊÕµ½¶àÉٷݲÎÈü×÷Æ·£¿Ç뽫ÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£®
£¨3£©»ñÈýµÈ½±µÄѧÉúÓжàÉÙÈË£¿

·ÖÎö £¨1£©ÀûÓÃ1¼õÈ¥ÆäËü½±ÏîµÄ°Ù·Ö±È¼´¿ÉÇó½â£»
£¨2£©¸ù¾ÝÒ»µÈ½±ÊÇ20·Ý£¬Õ¼10%¼´¿ÉÇóµÃ×Ü×÷Æ·Êý£¬ÓÃ×Ü×÷Æ·Êý³ËÒÔ¶þµÈ½±µÄ°Ù·Ö±ÈÇóµÃ¶þµÈ½±µÄÈËÊý£¬½ø¶ø½«ÌõÐÎͳ¼ÆÍ¼²¹³äÍêÕû£»
£¨3£©×ÜÈËÊý³ËÒÔÈýµÈ½±µÄ°Ù·Ö±È¼´¿ÉÇóµÃ»ñÈýµÈ½±µÄÈËÊý£®

½â´ð ½â£º£¨1£©1-20%-24%-46%=10%£®
¹Ê´ð°¸ÊÇ£º10%£»

£¨2£©¡ß´ÓÌõÐÎͳ¼ÆÍ¼¿ÉÖª£¬Ò»µÈ½±µÄ»ñ½±ÈËÊýΪ20£¬
¡àÕâ´Î±ÈÈüÖÐÊÕµ½µÄ²ÎÈü×÷ƷΪ$\frac{20}{10%}$=200·Ý£¬
¡à¶þµÈ½±µÄ»ñ½±ÈËÊýΪ200¡Á20%=40£®
ÌõÐÎͳ¼ÆÍ¼²¹³äÈçÏÂͼËùʾ£º


£¨3£©»ñÈýµÈ½±µÄѧÉúÓУº200¡Á24%=48ÈË£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÌõÐÎͳ¼ÆÍ¼ºÍÉÈÐÎͳ¼ÆÍ¼µÄ×ÛºÏÔËÓ㬶Á¶®Í³¼ÆÍ¼£¬´Ó²»Í¬µÄͳ¼ÆÍ¼Öеõ½±ØÒªµÄÐÅÏ¢Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£®ÌõÐÎͳ¼ÆÍ¼ÄÜÇå³þµØ±íʾ³öÿ¸öÏîÄ¿µÄÊý¾Ý£»ÉÈÐÎͳ¼ÆÍ¼Ö±½Ó·´Ó³²¿·ÖÕ¼×ÜÌåµÄ°Ù·Ö±È´óС£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®·½³Ì×é$\left\{\begin{array}{l}x+y=4\\ y+z=5\\ x+z=1\end{array}\right.$µÄ½âΪ$\left\{\begin{array}{l}{x=0}\\{y=4}\\{z=1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®°´ÒªÇó½â
£¨1£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨x-$\sqrt{3}$£©£¨x+$\sqrt{3}$£©-x£¨x-6£©£¬ÆäÖÐx=$\sqrt{5}$+$\frac{1}{2}$£®
£¨2£©ÒÑÖª$a+\frac{1}{a}=1+\sqrt{10}$£¬Çó${a^2}+\frac{1}{a^2}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÎªÁËÁ˽â500Ãû³õÈý±ÏÒµ°àѧÉúÒ»·ÖÖÓÌøÉþ´ÎÊýµÄÇé¿ö£¬Ä³Ð£³éÈ¡ÁËÒ»²¿·Ö³õÈý±ÏÒµÉú½øÐÐÒ»·ÖÖÓÌøÉþ´ÎÊýµÄ²âÊÔ£¬½«ËùµÃÊý¾Ý½øÐд¦Àí£¬¿ÉµÃƵÂÊ·Ö²¼±í£º
×é±ð·Ö×鯵ÊýƵÂÊ
189.5¡«99.540.04
299.5¡«109.530.03
3109.5¡«119.5460.46
4119.5¡«129.5Bc
5129.5¡«139.560.06
6139.5¡«149.520.02
ºÏ¼Æa1.00
£¨1£©Õâ¸öÎÊÌâÖУ¬×ÜÌåÊdzõÈý±ÏÒµ°àѧÉúÒ»·ÖÖÓÌøÉþ´ÎÊýµÄÇé¿öµÄÈ«Ì壻Ñù±¾ÈÝÁ¿a=100£»
£¨2£©µÚËÄС×éµÄƵÊýb=39£¬ÆµÂÊc=0.39£»
£¨3£©Èô´ÎÊýÔÚ110´Î£¨º¬110´Î£©ÒÔÉÏΪ´ï±ê£¬ÊÔ¹À¼Æ¸ÃУ³õÈý±ÏÒµÉúÒ»·ÖÖÓÌøÉþµÄ´ï±êÂÊÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÔÚ4¡Á4µÄ·½¸ñÖÐÓÐÎå¸öͬÑù´óСµÄÕý·½Ðΰ´Í¼Ê¾Î»Öðڷţ¬Òƶ¯ÆäÖÐÒ»¸öÕý·½Ðε½¿Õ°×·½¸ñÖУ¬ÓëÆäÓàËĸöÕý·½ÐÎ×é³ÉµÄÐÂͼÐÎÊÇÒ»¸öÖá¶Ô³ÆÍ¼ÐΣ¬ÕâÑùµÄÒÆ·¨ÓУ¨¡¡¡¡£©¸ö£®
A£®8B£®10C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆË㣺${£¨¦Ð-3.14£©^0}+\sqrt{12}+{£¨-\frac{1}{2}£©^{-1}}-|{1-\sqrt{3}}|-2sin{60¡ã}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®½â·½³Ì×飺
£¨1£©$\left\{\begin{array}{l}2x+3y=7\\ 3x-4y=2\end{array}\right.$
£¨2£©$\left\{{\begin{array}{l}{\frac{2x-1}{5}+\frac{3y-2}{4}=2}\\{\frac{3x-1}{5}-\frac{3y+2}{4}=0}\end{array}}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®²»µÈʽ3£¨x-2£©¡Üx+4µÄ·Ç¸ºÕûÊý½âÓÐ0.1.2.3.4.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªx-2y=0£¨x¡Ù0£©£¬Çó$\frac{{{x^2}-{y^2}}}{{{x^2}-2xy+{y^2}}}•\frac{x+3y}{x+y}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸