精英家教网 > 初中数学 > 题目详情

【题目】已知在△ABC中,AB=AC=5BC=6ADBC边上的中线,四边形ADBE是平行四边形.

1)求证:四边形ADBE是矩形;

2)求矩形ADBE的面积.

【答案】1)证明见解析;(212.

【解析】

1)根据等腰三角形三线合一的性质可以证得∠ADB=90°,根据矩形的定义即可证得.

2)根据勾股定理求得BD的长,然后利用矩形的面积公式即可求解.

解:(1)证明:∵AB=ACADBC的边上的中线,

∴AD⊥BC

∴∠ADB=90°

四边形ADBE是平行四边形.

平行四边形ADBE是矩形.

2∵AB=AC=5BC=6ADBC的中线,

∴BD=DC=6×=3

Rt△ACD中,

∴S矩形ADBE=BDAD=3×4=12

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系,位于第二象限的点在反比例函数的图像上,点与点关于原点对称,直线经过点,且与反比例函数的图像交于点.

1)当点的横坐标是-2,点坐标是时,分别求出的函数表达式;

2)若点的横坐标是点的横坐标的4倍,且的面积是16,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点的平行线交两弧于点,则图中阴影部分的面积是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在菱形ABCD中,ABtanABC2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角αα=∠BCD),得到对应线段CF

1)求证:BEDF

2)当t   秒时,DF的长度有最小值,最小值等于   

3)如图2,连接BDEFBDECEF于点PQ,当t为何值时,EPQ是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线

若该抛物线经过点,试求的值及抛物线的顶点坐标.

求此抛物线的顶点坐标(用含的代数式表示) ,并证明:不论为何值,该抛物线的顶点都在同一条直线上.

直线截抛物线所得的线段长是否为定值?若是,请求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某建筑物的顶部有一块标识牌,小明在斜坡上处测得标识牌顶部的仰角为,沿斜坡走下来在地面处测得标识牌底部的仰角为60°,已知斜坡的坡角为30°米. 则标识牌的高度是米__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1,点B(﹣9,10,AC∥x轴,点P时直线AC下方抛物线上的动点.

(1求抛物线的解析式;(2过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的点AC在⊙O上,⊙OAB相交于点D,连接CD,∠A30°DC

1)求圆心O到弦DC的距离;

2)若∠ACB+ADC180°,求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一台实物投影仪,图2是它的示意图,折线OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AOOM,垂足为点O,且AO7cm,∠BAO160°,BCOMCD8cm

将图2中的BC绕点B向下旋转45°,使得BCD落在BCD′的位置(如图3所示),此时CD′⊥OMAD′∥OMAD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94cos70°≈0.34cot70°≈0.36,结果精确到1cm

查看答案和解析>>

同步练习册答案