精英家教网 > 初中数学 > 题目详情
已知:如图,△ABC中,点D、E、F分别在边BC、CA、AB上,==
(1)若BE平分∠ABC,试说明四边形DBFE的形状,并加以证明;
(2)若点G为△ABC的重心,且△BCG与△EFG的面积之和为20,求△BCG的面积.

【答案】分析:(1)由△ABC中,==,可得FE∥BC,DE∥AB,即可判定四边形DBFE是平行四边形,又由BE平分∠ABC,可证得BF=EF,即可判定四边形DBFE是菱形;
(2)由FE∥BC,可得△EFG∽△BCG,又由相似三角形面积的比等于相似比的平方,可得=(2,然后由点G为△ABC的重心,可得FG:GC=1:2,可得S△BCG=4S△EFG.又由△BCG与△EFG的面积之和为20,即可求得答案.
解答:解:(1)四边形DBFE是菱形.…(1分)
证明:∵△ABC中,==
∴FE∥BC,DE∥AB,…(2分)
∴四边形DBFE是平行四边形,…(1分)
又∵BE平分∠ABC,
∴∠FBE=∠DBE,
∵FE∥BC,
∴∠FEB=∠DBE,…(1分)
∴∠FBE=∠FEB,…(1分)
∴BF=EF,…(1分)
∴四边形DBFE是菱形;

(2)∵FE∥BC,
∴△EFG∽△BCG,…(1分)
=(2,…(1分)
∵点G为△ABC的重心,
=,…(1分)
=(2=
∴S△BCG=4S△EFG.…(1分)
∵S△EFG+S△BCG=20,
∴S△BCG=16.…(1分)
点评:此题考查了相似三角形的判定与性质、三角形重心的性质以及菱形的判定.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案