精英家教网 > 初中数学 > 题目详情
9.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若点P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数关系图象如图2,有下列四个结论:①AE=6cm;②sin∠EBC=$\frac{4}{5}$;③当0<t≤10时,y=$\frac{2}{5}$t2; ④当t=12s时,△PBQ是等腰三角形.其中正确结论的序号是①②③.

分析 由图2可知,在点(10,40)至点(14,40)区间,△BPQ的面积不变,因此可推论BC=BE,由此分析动点P的运动过程如下:
(1)在BE段,BP=BQ;持续时间10s,则BE=BC=10;y是t的二次函数;
(2)在ED段,y=40是定值,持续时间4s,则ED=4;
(3)在DC段,y持续减小直至为0,y是t的一次函数.

解答 解:(1)分析函数图象可知,BC=10cm,ED=4cm,故AE=AD-ED=BC-ED=10-4=6cm,故①正确;
(2)如答图1所示,连接EC,过点E作EF⊥BC于点F,
由函数图象可知,BC=BE=10cm,S△BEC=40=$\frac{1}{2}$BC•EF=$\frac{1}{2}$×10×EF,∴EF=8,∴sin∠EBC=$\frac{EF}{BE}$,故②正确;
(3)如答图2所示,过点P作PG⊥BQ于点G,
∵BQ=BP=t,
∴y=S△BPQ=$\frac{1}{2}$BQ•PG=$\frac{1}{2}$BQ•BP•sin∠EBC=$\frac{1}{2}$t•t•$\frac{4}{5}$=$\frac{2}{5}$t2
故③正确;
(4)结论D错误.理由如下:
当t=12s时,点Q与点C重合,点P运动到ED的中点,设为N,如答图3所示,连接NB,NC.
此时AN=8,ND=2,由勾股定理求得:NB=8$\sqrt{2}$,NC=2$\sqrt{17}$,
∵BC=10,
∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.
故④错误;
故答案为:①②③.

点评 本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

17.如图,某景区有一出索道游览山谷的旅游点,已知索道两端距离AB为1300米,在山脚C点测得BC的距离为500米,∠ACB=90°,在C点观测山峰顶点A的仰角∠ACD=23.5°,求山峰顶点A到C点的水平面高度AD.(参考数据:sin23.5°≈0.40,cos23.5°=0.92,tan23.5°=0.43)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点O在∠APB的平分线上,⊙O与PA相切于点C.
(1)求证:直线PB与⊙O相切;
(2)PO的延长线与⊙O交于点E,若⊙O的半径为15,PC=20,求弦CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是(  )
A.∠BODB.∠ABOC.∠BOCD.∠BAO

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.化简求值:(x-y)2+(x-y)(x+3y),其中x=1,y=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.$\sqrt{\frac{25}{81}}$的平方根是±$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列四组线段中,不能构成直角三角形的是(  )
A.4,5,6B.3,4,5C.5,12,13D.7,24,25

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=$\frac{k}{x}$(x>0)经过点D,交BC的延长线于点E,且OB•AC=160,有下列四个结论:
①双曲线的解析式为y=$\frac{32}{x}$(x>0);
②点C的坐标是(6,8);
③sin∠COA=$\frac{4}{5}$;
④AC+OB=6$\sqrt{5}$.  
其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若$\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$与$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$是方程mx+ny=0的两个解,则m+n=0.

查看答案和解析>>

同步练习册答案