【题目】在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1cm2,则平行四边形ABCD的面积为( )cm2.
A.B.C.D.15
【答案】C
【解析】
可以设平行四边形ABCD的面积是S,根据等分点的定义利用平行四边形ABCD的面积减去四个角上的三角形的面积,就可表示出四边形A4B2C4D2的面积,从而得到关于S的方程,解方程即得答案.
解:设平行四边形ABCD的面积是S,设AB=5a,BC=3b.AB边上的高是3x,BC边上的高是5y.
则S=5a3x=3b5y.即ax=by=.
△AA4D2与△B2CC4全等,B2C=BC=b,B2C边上的高是5y=4y.
则△AA4D2与△B2CC4的面积是2by=.
同理△D2C4D与△A4BB2的面积是.
则四边形A4B2C4D2的面积是S﹣﹣﹣﹣=,即=1,
解得:,即平行四边形ABCD的面积为.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.
(1)求证:四边形EGFH是菱形;
(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明解不等式的过程如图,请指出他解答过程中错误步骤的序号,并写出正确的解答过程.
解:去分母,得3(1+x)-2(2x+1)≤1.①
去括号,得3+3x-4x+1≤1.②
移项,得3x-4x≤1-3-1.③
合并同类项,得-x≤-3.④
两边都除以-1,得x≤3.⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探究函数y=x+的图象与性质】
(1)函数y=x+的自变量x的取值范围是________;
(2)下列四个函数图象中,函数y=x+的图象大致是________;
(3)对于函数y=x+,求当x>0时,y的取值范围.请将下列的求解过程补充完整.
解:∵x>0,∴y=x+=()2+=+________.
∵≥0,∴y≥________.
【拓展运用】
(4)若函数y=,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=3,AC=4,BC=5,分别以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.
(1)求证:四边形DAEF是平行四边形;
(2)求四边形DAEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com